OpenCAEPoro:多相和多组分多孔介质流动的并行模拟框架

Shizhe Li, Chen-Song Zhang
{"title":"OpenCAEPoro:多相和多组分多孔介质流动的并行模拟框架","authors":"Shizhe Li, Chen-Song Zhang","doi":"arxiv-2406.10862","DOIUrl":null,"url":null,"abstract":"OpenCAEPoro is a parallel numerical simulation software developed in C++ for\nsimulating multiphase and multicomponent flows in porous media. The software\nutilizes a set of general-purpose compositional model equations, enabling it to\nhandle a diverse range of fluid dynamics, including the black oil model,\ncompositional model, and thermal recovery models. OpenCAEPoro establishes a\nunified solving framework that integrates many widely used methods, such as\nIMPEC, FIM, and AIM. This framework allows dynamic collaboration between\ndifferent methods. Specifically, based on this framework, we have developed an\nadaptively coupled domain decomposition method, which can provide initial\nsolutions for global methods to accelerate the simulation. The reliability of\nOpenCAEPoro has been validated through benchmark testing with the SPE\ncomparative solution project. Furthermore, its robust parallel efficiency has\nbeen tested in distributed parallel environments, demonstrating its suitability\nfor large-scale simulation problems.","PeriodicalId":501256,"journal":{"name":"arXiv - CS - Mathematical Software","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OpenCAEPoro: A Parallel Simulation Framework for Multiphase and Multicomponent Porous Media Flows\",\"authors\":\"Shizhe Li, Chen-Song Zhang\",\"doi\":\"arxiv-2406.10862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"OpenCAEPoro is a parallel numerical simulation software developed in C++ for\\nsimulating multiphase and multicomponent flows in porous media. The software\\nutilizes a set of general-purpose compositional model equations, enabling it to\\nhandle a diverse range of fluid dynamics, including the black oil model,\\ncompositional model, and thermal recovery models. OpenCAEPoro establishes a\\nunified solving framework that integrates many widely used methods, such as\\nIMPEC, FIM, and AIM. This framework allows dynamic collaboration between\\ndifferent methods. Specifically, based on this framework, we have developed an\\nadaptively coupled domain decomposition method, which can provide initial\\nsolutions for global methods to accelerate the simulation. The reliability of\\nOpenCAEPoro has been validated through benchmark testing with the SPE\\ncomparative solution project. Furthermore, its robust parallel efficiency has\\nbeen tested in distributed parallel environments, demonstrating its suitability\\nfor large-scale simulation problems.\",\"PeriodicalId\":501256,\"journal\":{\"name\":\"arXiv - CS - Mathematical Software\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Mathematical Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.10862\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Mathematical Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.10862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

OpenCAEPoro 是一款用 C++ 开发的并行数值模拟软件,用于模拟多孔介质中的多相和多组分流动。该软件使用一套通用的组成模型方程,能够处理多种流体动力学问题,包括黑油模型、组成模型和热采模型。OpenCAEPoro 建立了一个统一的求解框架,集成了许多广泛使用的方法,如 IMPEC、FIM 和 AIM。该框架允许不同方法之间的动态协作。具体来说,基于这个框架,我们开发了一种自适应耦合域分解方法,它可以为全局方法提供初始解,从而加速仿真。通过与 SPE 比较求解项目的基准测试,OpenCAEPoro 的可靠性得到了验证。此外,还在分布式并行环境中测试了其强大的并行效率,证明了它适用于大规模仿真问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
OpenCAEPoro: A Parallel Simulation Framework for Multiphase and Multicomponent Porous Media Flows
OpenCAEPoro is a parallel numerical simulation software developed in C++ for simulating multiphase and multicomponent flows in porous media. The software utilizes a set of general-purpose compositional model equations, enabling it to handle a diverse range of fluid dynamics, including the black oil model, compositional model, and thermal recovery models. OpenCAEPoro establishes a unified solving framework that integrates many widely used methods, such as IMPEC, FIM, and AIM. This framework allows dynamic collaboration between different methods. Specifically, based on this framework, we have developed an adaptively coupled domain decomposition method, which can provide initial solutions for global methods to accelerate the simulation. The reliability of OpenCAEPoro has been validated through benchmark testing with the SPE comparative solution project. Furthermore, its robust parallel efficiency has been tested in distributed parallel environments, demonstrating its suitability for large-scale simulation problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A prony method variant which surpasses the Adaptive LMS filter in the output signal's representation of input TorchDA: A Python package for performing data assimilation with deep learning forward and transformation functions HOBOTAN: Efficient Higher Order Binary Optimization Solver with Tensor Networks and PyTorch MPAT: Modular Petri Net Assembly Toolkit Enabling MPI communication within Numba/LLVM JIT-compiled Python code using numba-mpi v1.0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1