学生认为物体有真正的确定位置吗?

IF 2.6 2区 教育学 Q1 EDUCATION & EDUCATIONAL RESEARCH Physical Review Physics Education Research Pub Date : 2024-06-21 DOI:10.1103/physrevphyseducres.20.010154
Emily M. Stump, Mark Hughes, N. G. Holmes, Gina Passante
{"title":"学生认为物体有真正的确定位置吗?","authors":"Emily M. Stump, Mark Hughes, N. G. Holmes, Gina Passante","doi":"10.1103/physrevphyseducres.20.010154","DOIUrl":null,"url":null,"abstract":"Previous research on student thinking about experimental measurement and uncertainty has primarily focused on students’ procedural reasoning: Given some data, what should students calculate or do next? This approach, however, cannot tell us what beliefs or conceptual understanding leads to students’ procedural decisions. To explore this relationship, we first need to understand the range of students’ beliefs and conceptual understanding of measurement. In this work, we explored students’ philosophical beliefs about the existence of a true value in experimental measurement. We distributed a survey to students from 12 universities in which we presented two viewpoints on the existence of a true definite position resulting from an experiment, asking participants to indicate which view they agreed with more and asking them to explain their choice. We found that participants, both students and experts, varied in their beliefs about the existence of a true definite position and discussed a range of concepts related to quantum mechanics and the experimental process to explain their answers, regardless of whether or not they agreed with the existence of a true value. From these results, we postulate that students who exhibit similar procedural reasoning may hold widely varying philosophical views about measurement. We recommend that future work investigates this potential relationship and whether and how instruction should attend to these philosophical views in addition to students’ procedural decisions.","PeriodicalId":54296,"journal":{"name":"Physical Review Physics Education Research","volume":"71 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Do students think that objects have a true definite position?\",\"authors\":\"Emily M. Stump, Mark Hughes, N. G. Holmes, Gina Passante\",\"doi\":\"10.1103/physrevphyseducres.20.010154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previous research on student thinking about experimental measurement and uncertainty has primarily focused on students’ procedural reasoning: Given some data, what should students calculate or do next? This approach, however, cannot tell us what beliefs or conceptual understanding leads to students’ procedural decisions. To explore this relationship, we first need to understand the range of students’ beliefs and conceptual understanding of measurement. In this work, we explored students’ philosophical beliefs about the existence of a true value in experimental measurement. We distributed a survey to students from 12 universities in which we presented two viewpoints on the existence of a true definite position resulting from an experiment, asking participants to indicate which view they agreed with more and asking them to explain their choice. We found that participants, both students and experts, varied in their beliefs about the existence of a true definite position and discussed a range of concepts related to quantum mechanics and the experimental process to explain their answers, regardless of whether or not they agreed with the existence of a true value. From these results, we postulate that students who exhibit similar procedural reasoning may hold widely varying philosophical views about measurement. We recommend that future work investigates this potential relationship and whether and how instruction should attend to these philosophical views in addition to students’ procedural decisions.\",\"PeriodicalId\":54296,\"journal\":{\"name\":\"Physical Review Physics Education Research\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Physics Education Research\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevphyseducres.20.010154\",\"RegionNum\":2,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Physics Education Research","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1103/physrevphyseducres.20.010154","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0

摘要

以往关于学生对实验测量和不确定性的思考的研究主要集中在学生的程序推理上:给定一些数据,学生接下来应该计算或做什么?然而,这种方法无法告诉我们是什么信念或概念理解导致了学生的程序性决策。要探索这种关系,我们首先需要了解学生对测量的信念和概念理解的范围。在这项工作中,我们探讨了学生对实验测量中是否存在真值的哲学信念。我们向来自 12 所大学的学生发放了一份调查问卷,在问卷中,我们提出了关于实验中存在真实确定位置的两种观点,要求参与者指出他们更赞同哪种观点,并要求他们解释自己的选择。我们发现,参与者(包括学生和专家)对是否存在真正的确定位置的看法各不相同,并讨论了一系列与量子力学和实验过程有关的概念来解释他们的答案,而不管他们是否同意存在真正的数值。根据这些结果,我们推测表现出类似程序推理的学生可能对测量持有大相径庭的哲学观点。我们建议今后的工作应研究这种潜在的关系,以及除了学生的程序性决定外,教学是否和如何关注这些哲学观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Do students think that objects have a true definite position?
Previous research on student thinking about experimental measurement and uncertainty has primarily focused on students’ procedural reasoning: Given some data, what should students calculate or do next? This approach, however, cannot tell us what beliefs or conceptual understanding leads to students’ procedural decisions. To explore this relationship, we first need to understand the range of students’ beliefs and conceptual understanding of measurement. In this work, we explored students’ philosophical beliefs about the existence of a true value in experimental measurement. We distributed a survey to students from 12 universities in which we presented two viewpoints on the existence of a true definite position resulting from an experiment, asking participants to indicate which view they agreed with more and asking them to explain their choice. We found that participants, both students and experts, varied in their beliefs about the existence of a true definite position and discussed a range of concepts related to quantum mechanics and the experimental process to explain their answers, regardless of whether or not they agreed with the existence of a true value. From these results, we postulate that students who exhibit similar procedural reasoning may hold widely varying philosophical views about measurement. We recommend that future work investigates this potential relationship and whether and how instruction should attend to these philosophical views in addition to students’ procedural decisions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review Physics Education Research
Physical Review Physics Education Research Social Sciences-Education
CiteScore
5.70
自引率
41.90%
发文量
84
审稿时长
32 weeks
期刊介绍: PRPER covers all educational levels, from elementary through graduate education. All topics in experimental and theoretical physics education research are accepted, including, but not limited to: Educational policy Instructional strategies, and materials development Research methodology Epistemology, attitudes, and beliefs Learning environment Scientific reasoning and problem solving Diversity and inclusion Learning theory Student participation Faculty and teacher professional development
期刊最新文献
Erratum: Development and validation of a conceptual multiple-choice survey instrument to assess student understanding of introductory thermodynamics [Phys. Rev. Phys. Educ. Res. 19, 020112 (2023)] Reinforcing mindware or supporting cognitive reflection: Testing two strategies for addressing a persistent learning challenge in the context of air resistance How women and lesbian, gay, bisexual, transgender, and queer physics doctoral students navigate graduate education: The roles of professional environments and social networks Evolving study strategies and support structures of introductory physics students Effectiveness of conceptual-framework-based instruction on promoting knowledge integration in learning simple electric circuit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1