OpenSCV:针对智能合约漏洞的开放式分层分类法

IF 3.5 2区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING Empirical Software Engineering Pub Date : 2024-06-18 DOI:10.1007/s10664-024-10446-8
Fernando Richter Vidal, Naghmeh Ivaki, Nuno Laranjeiro
{"title":"OpenSCV:针对智能合约漏洞的开放式分层分类法","authors":"Fernando Richter Vidal, Naghmeh Ivaki, Nuno Laranjeiro","doi":"10.1007/s10664-024-10446-8","DOIUrl":null,"url":null,"abstract":"<p>Smart contracts are nowadays at the core of most blockchain systems. Like all computer programs, smart contracts are subject to the presence of residual faults, including severe security vulnerabilities. However, the key distinction lies in how these vulnerabilities are addressed. In smart contracts, when a vulnerability is identified, the affected contract must be terminated within the blockchain, as due to the immutable nature of blockchains, it is impossible to patch a contract once deployed. In this context, research efforts have been focused on proactively preventing the deployment of smart contracts containing vulnerabilities, mainly through the development of vulnerability detection tools. Along with these efforts, several heterogeneous vulnerability classification schemes appeared (e.g., most notably DASP and SWC). At the time of writing, these are mostly outdated initiatives, even though new smart contract vulnerabilities are consistently uncovered. In this paper, we propose OpenSCV, a new and Open hierarchical taxonomy for Smart Contract vulnerabilities, which is open to community contributions and matches the current state of the practice while being prepared to handle future modifications and evolution. The taxonomy was built based on the analysis of the existing research on vulnerability classification, community-maintained classification schemes, and research on smart contract vulnerability detection. We show how OpenSCV covers the announced detection ability of the current vulnerability detection tools and highlight its usefulness in smart contract vulnerability research. To validate OpenSCV, we performed an expert-based analysis wherein we invited multiple experts engaged in smart contract security research to participate in a questionnaire. The feedback from these experts indicated that the categories in OpenSCV are representative, clear, easily understandable, comprehensive, and highly useful. Regarding the vulnerabilities, the experts confirmed that they are easily understandable.</p>","PeriodicalId":11525,"journal":{"name":"Empirical Software Engineering","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OpenSCV: an open hierarchical taxonomy for smart contract vulnerabilities\",\"authors\":\"Fernando Richter Vidal, Naghmeh Ivaki, Nuno Laranjeiro\",\"doi\":\"10.1007/s10664-024-10446-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Smart contracts are nowadays at the core of most blockchain systems. Like all computer programs, smart contracts are subject to the presence of residual faults, including severe security vulnerabilities. However, the key distinction lies in how these vulnerabilities are addressed. In smart contracts, when a vulnerability is identified, the affected contract must be terminated within the blockchain, as due to the immutable nature of blockchains, it is impossible to patch a contract once deployed. In this context, research efforts have been focused on proactively preventing the deployment of smart contracts containing vulnerabilities, mainly through the development of vulnerability detection tools. Along with these efforts, several heterogeneous vulnerability classification schemes appeared (e.g., most notably DASP and SWC). At the time of writing, these are mostly outdated initiatives, even though new smart contract vulnerabilities are consistently uncovered. In this paper, we propose OpenSCV, a new and Open hierarchical taxonomy for Smart Contract vulnerabilities, which is open to community contributions and matches the current state of the practice while being prepared to handle future modifications and evolution. The taxonomy was built based on the analysis of the existing research on vulnerability classification, community-maintained classification schemes, and research on smart contract vulnerability detection. We show how OpenSCV covers the announced detection ability of the current vulnerability detection tools and highlight its usefulness in smart contract vulnerability research. To validate OpenSCV, we performed an expert-based analysis wherein we invited multiple experts engaged in smart contract security research to participate in a questionnaire. The feedback from these experts indicated that the categories in OpenSCV are representative, clear, easily understandable, comprehensive, and highly useful. Regarding the vulnerabilities, the experts confirmed that they are easily understandable.</p>\",\"PeriodicalId\":11525,\"journal\":{\"name\":\"Empirical Software Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Empirical Software Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10664-024-10446-8\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Empirical Software Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10664-024-10446-8","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

如今,智能合约是大多数区块链系统的核心。与所有计算机程序一样,智能合约也存在残余故障,包括严重的安全漏洞。然而,关键区别在于如何解决这些漏洞。在智能合约中,一旦发现漏洞,受影响的合约必须在区块链中终止,因为区块链具有不可更改的性质,一旦部署,就不可能对合约进行修补。在这种情况下,研究工作主要集中在通过开发漏洞检测工具,主动防止部署含有漏洞的智能合约。伴随着这些努力,出现了几种不同的漏洞分类方案(如最著名的 DASP 和 SWC)。在撰写本文时,尽管新的智能合约漏洞不断被发现,但这些方案大多已经过时。在本文中,我们提出了 OpenSCV,这是一种新的、开放的智能合约漏洞分层分类法,它对社区贡献开放,符合当前的实践状况,同时还能应对未来的修改和演变。该分类法是在分析现有漏洞分类研究、社区维护分类方案和智能合约漏洞检测研究的基础上建立的。我们展示了 OpenSCV 如何覆盖当前漏洞检测工具已公布的检测能力,并强调了其在智能合约漏洞研究中的实用性。为了验证 OpenSCV,我们进行了基于专家的分析,邀请多位从事智能合约安全研究的专家参与问卷调查。这些专家的反馈表明,OpenSCV 中的分类具有代表性、清晰、易懂、全面且非常有用。关于漏洞,专家们确认这些漏洞易于理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
OpenSCV: an open hierarchical taxonomy for smart contract vulnerabilities

Smart contracts are nowadays at the core of most blockchain systems. Like all computer programs, smart contracts are subject to the presence of residual faults, including severe security vulnerabilities. However, the key distinction lies in how these vulnerabilities are addressed. In smart contracts, when a vulnerability is identified, the affected contract must be terminated within the blockchain, as due to the immutable nature of blockchains, it is impossible to patch a contract once deployed. In this context, research efforts have been focused on proactively preventing the deployment of smart contracts containing vulnerabilities, mainly through the development of vulnerability detection tools. Along with these efforts, several heterogeneous vulnerability classification schemes appeared (e.g., most notably DASP and SWC). At the time of writing, these are mostly outdated initiatives, even though new smart contract vulnerabilities are consistently uncovered. In this paper, we propose OpenSCV, a new and Open hierarchical taxonomy for Smart Contract vulnerabilities, which is open to community contributions and matches the current state of the practice while being prepared to handle future modifications and evolution. The taxonomy was built based on the analysis of the existing research on vulnerability classification, community-maintained classification schemes, and research on smart contract vulnerability detection. We show how OpenSCV covers the announced detection ability of the current vulnerability detection tools and highlight its usefulness in smart contract vulnerability research. To validate OpenSCV, we performed an expert-based analysis wherein we invited multiple experts engaged in smart contract security research to participate in a questionnaire. The feedback from these experts indicated that the categories in OpenSCV are representative, clear, easily understandable, comprehensive, and highly useful. Regarding the vulnerabilities, the experts confirmed that they are easily understandable.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Empirical Software Engineering
Empirical Software Engineering 工程技术-计算机:软件工程
CiteScore
8.50
自引率
12.20%
发文量
169
审稿时长
>12 weeks
期刊介绍: Empirical Software Engineering provides a forum for applied software engineering research with a strong empirical component, and a venue for publishing empirical results relevant to both researchers and practitioners. Empirical studies presented here usually involve the collection and analysis of data and experience that can be used to characterize, evaluate and reveal relationships between software development deliverables, practices, and technologies. Over time, it is expected that such empirical results will form a body of knowledge leading to widely accepted and well-formed theories. The journal also offers industrial experience reports detailing the application of software technologies - processes, methods, or tools - and their effectiveness in industrial settings. Empirical Software Engineering promotes the publication of industry-relevant research, to address the significant gap between research and practice.
期刊最新文献
An empirical study on developers’ shared conversations with ChatGPT in GitHub pull requests and issues Quality issues in machine learning software systems An empirical study of token-based micro commits Software product line testing: a systematic literature review Consensus task interaction trace recommender to guide developers’ software navigation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1