图上动态过程的收敛特性

Timothy Horscroft
{"title":"图上动态过程的收敛特性","authors":"Timothy Horscroft","doi":"arxiv-2406.05147","DOIUrl":null,"url":null,"abstract":"Theoretical computer science plays an important role in the understanding of\nsocial networks and their properties. We can model information rippling\nthroughout social networks, or the opinions of social media users for example,\nusing graph theory and Markov chains. In this thesis, we model social networks\nas graphs, and consider two such processes: 1. Nodes talk to other nodes and find middle ground, causing their opinions\nto come closer to consensus (the load balancing model) 2. All nodes take the maximum value of their neighbours in lockstep (the\nsynchronous maximum model) We study the convergence behaviours of each process, such as the eventual\nstate of the graph, the convergence time and the period. We provide proofs of\nthe eventual states and periods for each of the above models, and theoretical\nbounds for the worst case convergence times. We verify these with experiments,\nand explore further questions such as the average case convergence time of\nvarious special classes of graphs, or the convergence times when the model is\naltered slightly.","PeriodicalId":501216,"journal":{"name":"arXiv - CS - Discrete Mathematics","volume":"86 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence Properties of Dynamic Processes on Graphs\",\"authors\":\"Timothy Horscroft\",\"doi\":\"arxiv-2406.05147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Theoretical computer science plays an important role in the understanding of\\nsocial networks and their properties. We can model information rippling\\nthroughout social networks, or the opinions of social media users for example,\\nusing graph theory and Markov chains. In this thesis, we model social networks\\nas graphs, and consider two such processes: 1. Nodes talk to other nodes and find middle ground, causing their opinions\\nto come closer to consensus (the load balancing model) 2. All nodes take the maximum value of their neighbours in lockstep (the\\nsynchronous maximum model) We study the convergence behaviours of each process, such as the eventual\\nstate of the graph, the convergence time and the period. We provide proofs of\\nthe eventual states and periods for each of the above models, and theoretical\\nbounds for the worst case convergence times. We verify these with experiments,\\nand explore further questions such as the average case convergence time of\\nvarious special classes of graphs, or the convergence times when the model is\\naltered slightly.\",\"PeriodicalId\":501216,\"journal\":{\"name\":\"arXiv - CS - Discrete Mathematics\",\"volume\":\"86 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.05147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.05147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

理论计算机科学在理解社交网络及其特性方面发挥着重要作用。我们可以利用图论和马尔可夫链对遍布社交网络的信息涟漪或社交媒体用户的观点等进行建模。在本论文中,我们将社交网络建模为图,并考虑了两个这样的过程:1.节点与其他节点对话并找到中间立场,使它们的意见更接近共识(负载均衡模型)。 2.所有节点同步取其邻居的最大值(同步最大值模型)。 我们研究了每个过程的收敛行为,如图的最终状态、收敛时间和周期。我们为上述每个模型的最终状态和周期提供了证明,并为最坏情况下的收敛时间提供了理论边界。我们用实验验证了这些,并探讨了更多问题,如各种特殊类别图的平均收敛时间,或模型稍有改变时的收敛时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Convergence Properties of Dynamic Processes on Graphs
Theoretical computer science plays an important role in the understanding of social networks and their properties. We can model information rippling throughout social networks, or the opinions of social media users for example, using graph theory and Markov chains. In this thesis, we model social networks as graphs, and consider two such processes: 1. Nodes talk to other nodes and find middle ground, causing their opinions to come closer to consensus (the load balancing model) 2. All nodes take the maximum value of their neighbours in lockstep (the synchronous maximum model) We study the convergence behaviours of each process, such as the eventual state of the graph, the convergence time and the period. We provide proofs of the eventual states and periods for each of the above models, and theoretical bounds for the worst case convergence times. We verify these with experiments, and explore further questions such as the average case convergence time of various special classes of graphs, or the convergence times when the model is altered slightly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reconfiguration of labeled matchings in triangular grid graphs Decision problems on geometric tilings Ants on the highway A sequential solution to the density classification task using an intermediate alphabet Complexity of Deciding the Equality of Matching Numbers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1