{"title":"论某些阿贝尔群上稀疏布尔函数的傅立叶分析","authors":"Sourav Chakraborty, Swarnalipa Datta, Pranjal Dutta, Arijit Ghosh, Swagato Sanyal","doi":"arxiv-2406.18700","DOIUrl":null,"url":null,"abstract":"Given an Abelian group G, a Boolean-valued function f: G -> {-1,+1}, is said\nto be s-sparse, if it has at most s-many non-zero Fourier coefficients over the\ndomain G. In a seminal paper, Gopalan et al. proved \"Granularity\" for Fourier\ncoefficients of Boolean valued functions over Z_2^n, that have found many\ndiverse applications in theoretical computer science and combinatorics. They\nalso studied structural results for Boolean functions over Z_2^n which are\napproximately Fourier-sparse. In this work, we obtain structural results for\napproximately Fourier-sparse Boolean valued functions over Abelian groups G of\nthe form,G:= Z_{p_1}^{n_1} \\times ... \\times Z_{p_t}^{n_t}, for distinct primes\np_i. We also obtain a lower bound of the form 1/(m^{2}s)^ceiling(phi(m)/2), on\nthe absolute value of the smallest non-zero Fourier coefficient of an s-sparse\nfunction, where m=p_1 ... p_t, and phi(m)=(p_1-1) ... (p_t-1). We carefully\napply probabilistic techniques from Gopalan et al., to obtain our structural\nresults, and use some non-trivial results from algebraic number theory to get\nthe lower bound. We construct a family of at most s-sparse Boolean functions over Z_p^n, where\np > 2, for arbitrarily large enough s, where the minimum non-zero Fourier\ncoefficient is 1/omega(n). The \"Granularity\" result of Gopalan et al. implies\nthat the absolute values of non-zero Fourier coefficients of any s-sparse\nBoolean valued function over Z_2^n are 1/O(s). So, our result shows that one\ncannot expect such a lower bound for general Abelian groups. Using our new structural results on the Fourier coefficients of sparse\nfunctions, we design an efficient testing algorithm for Fourier-sparse Boolean\nfunctions, thata requires poly((ms)^phi(m),1/epsilon)-many queries. Further, we\nprove an Omega(sqrt{s}) lower bound on the query complexity of any adaptive\nsparsity testing algorithm.","PeriodicalId":501024,"journal":{"name":"arXiv - CS - Computational Complexity","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Fourier analysis of sparse Boolean functions over certain Abelian groups\",\"authors\":\"Sourav Chakraborty, Swarnalipa Datta, Pranjal Dutta, Arijit Ghosh, Swagato Sanyal\",\"doi\":\"arxiv-2406.18700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given an Abelian group G, a Boolean-valued function f: G -> {-1,+1}, is said\\nto be s-sparse, if it has at most s-many non-zero Fourier coefficients over the\\ndomain G. In a seminal paper, Gopalan et al. proved \\\"Granularity\\\" for Fourier\\ncoefficients of Boolean valued functions over Z_2^n, that have found many\\ndiverse applications in theoretical computer science and combinatorics. They\\nalso studied structural results for Boolean functions over Z_2^n which are\\napproximately Fourier-sparse. In this work, we obtain structural results for\\napproximately Fourier-sparse Boolean valued functions over Abelian groups G of\\nthe form,G:= Z_{p_1}^{n_1} \\\\times ... \\\\times Z_{p_t}^{n_t}, for distinct primes\\np_i. We also obtain a lower bound of the form 1/(m^{2}s)^ceiling(phi(m)/2), on\\nthe absolute value of the smallest non-zero Fourier coefficient of an s-sparse\\nfunction, where m=p_1 ... p_t, and phi(m)=(p_1-1) ... (p_t-1). We carefully\\napply probabilistic techniques from Gopalan et al., to obtain our structural\\nresults, and use some non-trivial results from algebraic number theory to get\\nthe lower bound. We construct a family of at most s-sparse Boolean functions over Z_p^n, where\\np > 2, for arbitrarily large enough s, where the minimum non-zero Fourier\\ncoefficient is 1/omega(n). The \\\"Granularity\\\" result of Gopalan et al. implies\\nthat the absolute values of non-zero Fourier coefficients of any s-sparse\\nBoolean valued function over Z_2^n are 1/O(s). So, our result shows that one\\ncannot expect such a lower bound for general Abelian groups. Using our new structural results on the Fourier coefficients of sparse\\nfunctions, we design an efficient testing algorithm for Fourier-sparse Boolean\\nfunctions, thata requires poly((ms)^phi(m),1/epsilon)-many queries. Further, we\\nprove an Omega(sqrt{s}) lower bound on the query complexity of any adaptive\\nsparsity testing algorithm.\",\"PeriodicalId\":501024,\"journal\":{\"name\":\"arXiv - CS - Computational Complexity\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.18700\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.18700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在一篇开创性论文中,Gopalan 等人证明了 Z_2^n 上布尔值函数傅里叶系数的 "粒度",这在理论计算机科学和组合学中得到了广泛应用。他们还研究了 Z_2^n 上近似傅里叶稀疏布尔函数的结构性结果。在这项工作中,我们获得了形式为 G:= Z_{p_1}^{n_1} 的阿贝尔群 G 上近似傅立叶稀疏布尔有值函数的结构结果。\times ...\times Z_{p_t}^{n_t},对于不同的素数 p_i。我们还得到了一个 s 稀疏函数最小非零傅里叶系数绝对值的下限,其形式为 1/(m^{2}s)^ceiling(phi(m)/2),其中 m=p_1 ... p_t,phi(m)=(p_1-1) ... (p_t-1)。我们小心翼翼地运用戈帕兰等人的概率技术来获得我们的结构性结果,并利用代数数论的一些非难结果来得到下界。我们构造了 Z_p^n 上最多 s 个稀疏布尔函数族,其中对于任意足够大的 s,p > 2,最小非零傅里叶系数为 1/omega(n)。戈帕兰等人的 "粒度 "结果意味着,Z_2^n 上任何 s 稀疏布尔值函数的非零傅里叶系数的绝对值都是 1/O(s)。因此,我们的结果表明,对于一般的阿贝尔群,我们无法期待这样的下界。利用我们关于稀疏函数傅里叶系数的新结构性结果,我们设计了一种高效的傅里叶稀疏布尔函数测试算法,它只需要 poly((ms)^phi(m),1/epsilon)-many 查询。此外,我们还证明了任何自适应稀疏性测试算法查询复杂度的欧米茄(sqrt{s})下限。
On Fourier analysis of sparse Boolean functions over certain Abelian groups
Given an Abelian group G, a Boolean-valued function f: G -> {-1,+1}, is said
to be s-sparse, if it has at most s-many non-zero Fourier coefficients over the
domain G. In a seminal paper, Gopalan et al. proved "Granularity" for Fourier
coefficients of Boolean valued functions over Z_2^n, that have found many
diverse applications in theoretical computer science and combinatorics. They
also studied structural results for Boolean functions over Z_2^n which are
approximately Fourier-sparse. In this work, we obtain structural results for
approximately Fourier-sparse Boolean valued functions over Abelian groups G of
the form,G:= Z_{p_1}^{n_1} \times ... \times Z_{p_t}^{n_t}, for distinct primes
p_i. We also obtain a lower bound of the form 1/(m^{2}s)^ceiling(phi(m)/2), on
the absolute value of the smallest non-zero Fourier coefficient of an s-sparse
function, where m=p_1 ... p_t, and phi(m)=(p_1-1) ... (p_t-1). We carefully
apply probabilistic techniques from Gopalan et al., to obtain our structural
results, and use some non-trivial results from algebraic number theory to get
the lower bound. We construct a family of at most s-sparse Boolean functions over Z_p^n, where
p > 2, for arbitrarily large enough s, where the minimum non-zero Fourier
coefficient is 1/omega(n). The "Granularity" result of Gopalan et al. implies
that the absolute values of non-zero Fourier coefficients of any s-sparse
Boolean valued function over Z_2^n are 1/O(s). So, our result shows that one
cannot expect such a lower bound for general Abelian groups. Using our new structural results on the Fourier coefficients of sparse
functions, we design an efficient testing algorithm for Fourier-sparse Boolean
functions, thata requires poly((ms)^phi(m),1/epsilon)-many queries. Further, we
prove an Omega(sqrt{s}) lower bound on the query complexity of any adaptive
sparsity testing algorithm.