CZTS 纳米片的双重功能:作为锂离子电池的阳极材料和 DSSC 的反电极 - DFT 和实验研究

IF 3.2 Q2 CHEMISTRY, PHYSICAL Energy advances Pub Date : 2024-06-18 DOI:10.1039/D4YA00135D
G. Rajesh, Jeyakiruba Palraj, Venkatraman M. R., Ramesh Sivasamy, Sreejith P. Madhusudanan, Helen Annal Therese and Marcos Flores
{"title":"CZTS 纳米片的双重功能:作为锂离子电池的阳极材料和 DSSC 的反电极 - DFT 和实验研究","authors":"G. Rajesh, Jeyakiruba Palraj, Venkatraman M. R., Ramesh Sivasamy, Sreejith P. Madhusudanan, Helen Annal Therese and Marcos Flores","doi":"10.1039/D4YA00135D","DOIUrl":null,"url":null,"abstract":"<p >This research work aims to develop a new dual-functional electrode material suitable for both lithium-ion batteries (LIBs) and dye-sensitized solar cells (DSSCs). Nanostructured Cu<small><sub>2</sub></small>ZnSnS<small><sub>4</sub></small> (CZTS) was synthesized through the solvothermal method. Structural properties analysed through the X-ray diffraction pattern (XRD) and Raman spectra reveal the formation of the CZTS with kesterite structure . The stoichiometry and the oxidation states of CZTS have been analyzed using X-ray photoelectron spectroscopy (XPS). The core level XPS spectra of Cu 2p, Zn 2p, Sn 3d, and S 2p confirm the presence of the constituent elements in the required oxidation states (Cu<small><sup>+</sup></small>, Zn<small><sup>2+</sup></small>, Sn<small><sup>4+</sup></small>, S<small><sup>2−</sup></small>). The surface morphology of the CZTS nanoparticles showed a nanoflake-like structure with a surface area of 34.20 m<small><sup>2</sup></small> g<small><sup>−1</sup></small>. The geometrical optimization, electronic, and optical properties were calculated using DFT calculations. The semiconducting material CZTS is electrochemically active toward Li, which can be used as an alternative anode material for lithium-ion batteries offering potential improvements in cycling stability and specific capacity. The electrochemical studies of the CZTS nanoflakes exhibited a specific capacity of 1141.08 mA h g<small><sup>−1</sup></small> and 350 mA h g<small><sup>−1</sup></small> at 0.1C and 1C rates respectively. The cycling stability of CZTS at a high scan rate of 1C, and the specific capacity of 220 mA h g<small><sup>−1</sup></small> over 70 cycles with 73% coulombic efficiency, suggest it to be a promising alternative anode material in the next-generation lithium-ion batteries. The performance of CZTS as a counter electrode in dye-sensitized solar cells was also explored. The DSSC constructed with CZTS as the counter electrode showed an efficiency of 5.9%.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 7","pages":" 1717-1725"},"PeriodicalIF":3.2000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00135d?page=search","citationCount":"0","resultStr":"{\"title\":\"Dual-functionality of CZTS nanoflakes: as an anode material for lithium-ion batteries and as a counter electrode in DSSCs – a DFT and experimental investigation†\",\"authors\":\"G. Rajesh, Jeyakiruba Palraj, Venkatraman M. R., Ramesh Sivasamy, Sreejith P. Madhusudanan, Helen Annal Therese and Marcos Flores\",\"doi\":\"10.1039/D4YA00135D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This research work aims to develop a new dual-functional electrode material suitable for both lithium-ion batteries (LIBs) and dye-sensitized solar cells (DSSCs). Nanostructured Cu<small><sub>2</sub></small>ZnSnS<small><sub>4</sub></small> (CZTS) was synthesized through the solvothermal method. Structural properties analysed through the X-ray diffraction pattern (XRD) and Raman spectra reveal the formation of the CZTS with kesterite structure . The stoichiometry and the oxidation states of CZTS have been analyzed using X-ray photoelectron spectroscopy (XPS). The core level XPS spectra of Cu 2p, Zn 2p, Sn 3d, and S 2p confirm the presence of the constituent elements in the required oxidation states (Cu<small><sup>+</sup></small>, Zn<small><sup>2+</sup></small>, Sn<small><sup>4+</sup></small>, S<small><sup>2−</sup></small>). The surface morphology of the CZTS nanoparticles showed a nanoflake-like structure with a surface area of 34.20 m<small><sup>2</sup></small> g<small><sup>−1</sup></small>. The geometrical optimization, electronic, and optical properties were calculated using DFT calculations. The semiconducting material CZTS is electrochemically active toward Li, which can be used as an alternative anode material for lithium-ion batteries offering potential improvements in cycling stability and specific capacity. The electrochemical studies of the CZTS nanoflakes exhibited a specific capacity of 1141.08 mA h g<small><sup>−1</sup></small> and 350 mA h g<small><sup>−1</sup></small> at 0.1C and 1C rates respectively. The cycling stability of CZTS at a high scan rate of 1C, and the specific capacity of 220 mA h g<small><sup>−1</sup></small> over 70 cycles with 73% coulombic efficiency, suggest it to be a promising alternative anode material in the next-generation lithium-ion batteries. The performance of CZTS as a counter electrode in dye-sensitized solar cells was also explored. The DSSC constructed with CZTS as the counter electrode showed an efficiency of 5.9%.</p>\",\"PeriodicalId\":72913,\"journal\":{\"name\":\"Energy advances\",\"volume\":\" 7\",\"pages\":\" 1717-1725\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00135d?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ya/d4ya00135d\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ya/d4ya00135d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在开发一种新型双功能电极材料,同时适用于锂离子电池(LIB)和染料敏化太阳能电池(DSSC)。研究采用溶热法合成了纳米结构的 Cu2ZnSnS4(CZTS)。通过 X 射线衍射图谱(XRD)和拉曼光谱分析结构特性,发现 Cu2ZnSnS4 形成了钾长石结构。利用 X 射线光电子能谱(XPS)分析了 CZTS 的化学计量和氧化态。Cu 2p、Zn 2p、Sn 3d 和 S 2p 的核心级 XPS 光谱证实了组成元素处于所需的氧化态(Cu+、Zn2+、Sn4+、S2-)。CZTS 纳米粒子的表面形态呈现出纳米片状结构,表面积为 34.20 平方米 g-1。利用 DFT 计算对其几何优化、电子和光学特性进行了计算。半导体材料 CZTS 对锂具有电化学活性,可用作锂离子电池的替代阳极材料,在循环稳定性和比容量方面具有潜在的改进潜力。CZTS 纳米片的电化学研究表明,在 0.1C 和 1C 速率下,比容量分别为 1141.08 mA h g-1 和 350 mA h g-1。CZTS 在 1C 的高扫描速率下循环稳定,70 次循环后比容量为 220 mA h g-1,库仑效率为 73%,这表明它有望成为下一代锂离子电池的替代负极材料。研究还探讨了 CZTS 作为染料敏化太阳能电池对电极的性能。以 CZTS 为对电极构建的 DSSC 显示出 5.9% 的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dual-functionality of CZTS nanoflakes: as an anode material for lithium-ion batteries and as a counter electrode in DSSCs – a DFT and experimental investigation†

This research work aims to develop a new dual-functional electrode material suitable for both lithium-ion batteries (LIBs) and dye-sensitized solar cells (DSSCs). Nanostructured Cu2ZnSnS4 (CZTS) was synthesized through the solvothermal method. Structural properties analysed through the X-ray diffraction pattern (XRD) and Raman spectra reveal the formation of the CZTS with kesterite structure . The stoichiometry and the oxidation states of CZTS have been analyzed using X-ray photoelectron spectroscopy (XPS). The core level XPS spectra of Cu 2p, Zn 2p, Sn 3d, and S 2p confirm the presence of the constituent elements in the required oxidation states (Cu+, Zn2+, Sn4+, S2−). The surface morphology of the CZTS nanoparticles showed a nanoflake-like structure with a surface area of 34.20 m2 g−1. The geometrical optimization, electronic, and optical properties were calculated using DFT calculations. The semiconducting material CZTS is electrochemically active toward Li, which can be used as an alternative anode material for lithium-ion batteries offering potential improvements in cycling stability and specific capacity. The electrochemical studies of the CZTS nanoflakes exhibited a specific capacity of 1141.08 mA h g−1 and 350 mA h g−1 at 0.1C and 1C rates respectively. The cycling stability of CZTS at a high scan rate of 1C, and the specific capacity of 220 mA h g−1 over 70 cycles with 73% coulombic efficiency, suggest it to be a promising alternative anode material in the next-generation lithium-ion batteries. The performance of CZTS as a counter electrode in dye-sensitized solar cells was also explored. The DSSC constructed with CZTS as the counter electrode showed an efficiency of 5.9%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
期刊最新文献
Correction: Steady states and kinetic modelling of the acid-catalysed ethanolysis of glucose, cellulose, and corn cob to ethyl levulinate. Back cover Fabrication methods, pseudocapacitance characteristics, and integration of conjugated conducting polymers in electrochemical energy storage devices Inside back cover Back cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1