具有本征 GaN 夹层的 InxGa1-xN 量子点中间带太阳能电池的结构优化和工程设计

IF 3.2 Q2 CHEMISTRY, PHYSICAL Energy advances Pub Date : 2024-06-12 DOI:10.1039/D4YA00103F
Deborah Eric, Jianliang Jiang, Ali Imran and Abbas Ahmad Khan
{"title":"具有本征 GaN 夹层的 InxGa1-xN 量子点中间带太阳能电池的结构优化和工程设计","authors":"Deborah Eric, Jianliang Jiang, Ali Imran and Abbas Ahmad Khan","doi":"10.1039/D4YA00103F","DOIUrl":null,"url":null,"abstract":"<p >It is essential to have an adequately thick active layer to achieve efficient performance in quantum dot intermediate band solar cells (QD-IBSC) utilizing In<small><sub><em>x</em></sub></small>Ga<small><sub>1−<em>x</em></sub></small>N with high indium concentrations. The thickness plays a crucial role in maximizing photon absorption and optimizing the overall effectiveness of the solar cell (SC). In this paper, we introduce QD-IBSC with Ga-face (0 0 0 1) applying 1 nm i-GaN interlayers, which will provide strain relaxation to the In<small><sub>0.5</sub></small>Ga<small><sub>0.5</sub></small>N/GaN QD layer for increasing photovoltaic performance. Normally, the coupling among QDs splits the quantized energy level and leads to the formation of minibands within the forbidden region of conventional SC. In particular, the QDs are sensitive to dot regimentation and thus affect the properties of QD-IBSC. The electronic band structure of these QDs is controlled by changing the size of the QD, interdot distances and regimentation. In this paper, optimization of the optical structure of the QD-IBSC is performed by investigating the calculation results of both the maximum number of absorbed photons and the carrier transport property through tunneling simultaneously as a function of the thickness of the i-GaN interlayers. For the calculation, the three-dimensional regimented array of In<small><sub><em>x</em></sub></small>Ga<small><sub>1−<em>x</em></sub></small>N QD is analyzed using an envelope function. This work demonstrates Ga-face n–i–p structure (n-GaN/i-GaN:In<small><sub>0.5</sub></small>Ga<small><sub>0.5</sub></small>N:i-GaN/p-GaN) utilizing the 20 periods of 3 nm thick In<small><sub>0.5</sub></small>Ga<small><sub>0.5</sub></small>N QD layers and a GaN layer of 1 nm thickness can achieve a maximum conversion efficiency of 48%.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00103f?page=search","citationCount":"0","resultStr":"{\"title\":\"Structural optimization and engineering of InxGa1−xN quantum dot intermediate band solar cells with intrinsic GaN interlayers\",\"authors\":\"Deborah Eric, Jianliang Jiang, Ali Imran and Abbas Ahmad Khan\",\"doi\":\"10.1039/D4YA00103F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >It is essential to have an adequately thick active layer to achieve efficient performance in quantum dot intermediate band solar cells (QD-IBSC) utilizing In<small><sub><em>x</em></sub></small>Ga<small><sub>1−<em>x</em></sub></small>N with high indium concentrations. The thickness plays a crucial role in maximizing photon absorption and optimizing the overall effectiveness of the solar cell (SC). In this paper, we introduce QD-IBSC with Ga-face (0 0 0 1) applying 1 nm i-GaN interlayers, which will provide strain relaxation to the In<small><sub>0.5</sub></small>Ga<small><sub>0.5</sub></small>N/GaN QD layer for increasing photovoltaic performance. Normally, the coupling among QDs splits the quantized energy level and leads to the formation of minibands within the forbidden region of conventional SC. In particular, the QDs are sensitive to dot regimentation and thus affect the properties of QD-IBSC. The electronic band structure of these QDs is controlled by changing the size of the QD, interdot distances and regimentation. In this paper, optimization of the optical structure of the QD-IBSC is performed by investigating the calculation results of both the maximum number of absorbed photons and the carrier transport property through tunneling simultaneously as a function of the thickness of the i-GaN interlayers. For the calculation, the three-dimensional regimented array of In<small><sub><em>x</em></sub></small>Ga<small><sub>1−<em>x</em></sub></small>N QD is analyzed using an envelope function. This work demonstrates Ga-face n–i–p structure (n-GaN/i-GaN:In<small><sub>0.5</sub></small>Ga<small><sub>0.5</sub></small>N:i-GaN/p-GaN) utilizing the 20 periods of 3 nm thick In<small><sub>0.5</sub></small>Ga<small><sub>0.5</sub></small>N QD layers and a GaN layer of 1 nm thickness can achieve a maximum conversion efficiency of 48%.</p>\",\"PeriodicalId\":72913,\"journal\":{\"name\":\"Energy advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00103f?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ya/d4ya00103f\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ya/d4ya00103f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

量子点中间带太阳能电池(QD-IBSC)采用高铟浓度的 InxGa1-xN,要实现高效性能,必须有足够厚的活性层。厚度对最大限度地吸收光子和优化太阳能电池(SC)的整体效能起着至关重要的作用。本文介绍了在 Ga 面(0 0 0 1)应用 1 nm i-GaN 夹层的 QD-IBSC,这将为 In0.5Ga0.5N/GaN QD 层提供应变松弛,从而提高光伏性能。通常,QD 之间的耦合会分裂量子化能级,并导致在传统 SC 的禁区内形成迷你带。特别是,QD 对点团化很敏感,因此会影响 QD-IBSC 的特性。这些 QD 的电子能带结构可通过改变 QD 的尺寸、点间距和团化来控制。本文通过研究吸收光子的最大数量和载流子通过隧道传输特性同时与 i-GaN 夹层厚度的函数关系的计算结果,对 QD-IBSC 的光学结构进行了优化。在计算过程中,使用包络函数分析了 InxGa1-xN QD 的三维规整阵列。这项研究表明,利用 20 个周期的 3 nm 厚 In0.5Ga0.5N QD 层和 1 nm 厚 GaN 层的 Ga-face ni-p 结构(n-GaN/i-GaN:In0.5Ga0.5N:i-GaN/p-GaN)可实现 48% 的最高转换效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structural optimization and engineering of InxGa1−xN quantum dot intermediate band solar cells with intrinsic GaN interlayers

It is essential to have an adequately thick active layer to achieve efficient performance in quantum dot intermediate band solar cells (QD-IBSC) utilizing InxGa1−xN with high indium concentrations. The thickness plays a crucial role in maximizing photon absorption and optimizing the overall effectiveness of the solar cell (SC). In this paper, we introduce QD-IBSC with Ga-face (0 0 0 1) applying 1 nm i-GaN interlayers, which will provide strain relaxation to the In0.5Ga0.5N/GaN QD layer for increasing photovoltaic performance. Normally, the coupling among QDs splits the quantized energy level and leads to the formation of minibands within the forbidden region of conventional SC. In particular, the QDs are sensitive to dot regimentation and thus affect the properties of QD-IBSC. The electronic band structure of these QDs is controlled by changing the size of the QD, interdot distances and regimentation. In this paper, optimization of the optical structure of the QD-IBSC is performed by investigating the calculation results of both the maximum number of absorbed photons and the carrier transport property through tunneling simultaneously as a function of the thickness of the i-GaN interlayers. For the calculation, the three-dimensional regimented array of InxGa1−xN QD is analyzed using an envelope function. This work demonstrates Ga-face n–i–p structure (n-GaN/i-GaN:In0.5Ga0.5N:i-GaN/p-GaN) utilizing the 20 periods of 3 nm thick In0.5Ga0.5N QD layers and a GaN layer of 1 nm thickness can achieve a maximum conversion efficiency of 48%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
期刊最新文献
Boosting Ethylene Yield via Synergistic 2D/0D Nanostructured VCu Layered Double Hydroxide/TiO2 Catalyst in Electrochemical CO2 Reduction Effective electrochemical water oxidation to H2O2 based on bimetallic Fe/Co metal-organic framework Open Circuit Voltage of an All-Vanadium Redox Flow Battery as a Function of the State of Charge obtained from UV-Vis Spectroscopy Back cover Ag-NiP Deposited Green Carbon Channels Embedded NiP Panels for Sustainable Water Splitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1