中国鄂尔多斯盆地东缘大宁-集贤区块叠压煤层含气系统的层序地层分析

IF 1.8 4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Frontiers of Earth Science Pub Date : 2024-06-22 DOI:10.1007/s11707-024-1098-x
Shizhuang Yang, Song Li, Wenguang Tian, Guanghao Zhong, Junjian Wang
{"title":"中国鄂尔多斯盆地东缘大宁-集贤区块叠压煤层含气系统的层序地层分析","authors":"Shizhuang Yang, Song Li, Wenguang Tian, Guanghao Zhong, Junjian Wang","doi":"10.1007/s11707-024-1098-x","DOIUrl":null,"url":null,"abstract":"<p>The identification of superimposed gas-bearing systems in coal measures is the basis for expediting the optimization of coal measure gas co-production. Through the analysis of drill cores and log data of Upper Carboniferous Benxi Formation to the member 8 of Middle Permian Lower Shihezi Formation in Daning-Jixian block, eastern margin of Ordos Basin, four distinct superimposed coal measure gas-bearing systems were identified, and their formation mechanism was discussed from the sequence stratigraphic perspective. Type I system mainly contains multiple coal seams, shales and sandstone layers. Type II system is dominated by multiple coal seams and shales. Type III is characterized by multiple sandstone layers, and type IV system is dominated by limestones and mudstones. In general, the gas-bearing systems deposited in barrier-lagoon are type II, those deposited in carbonate tidal flats are type IV, and those deposited in the delta front are types I and III. The marine mudstone, acting as a key layer near the maximum flooding surface, exhibits very low permeability, which is the main factor contributing to the formation of superimposed gas-bearing systems. The sedimentary environment plays a significant role in controlling the distribution of gas-bearing systems. Notably, the vertical gas-bearing systems in the south-western region, where delta front and lagoon facies overlap, are more complex than those in the north-eastern delta front facies.</p>","PeriodicalId":48927,"journal":{"name":"Frontiers of Earth Science","volume":"22 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sequence stratigraphic analysis of superimposed coal measure gas-bearing system in Daning-Jixian block, eastern margin of Ordos Basin, China\",\"authors\":\"Shizhuang Yang, Song Li, Wenguang Tian, Guanghao Zhong, Junjian Wang\",\"doi\":\"10.1007/s11707-024-1098-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The identification of superimposed gas-bearing systems in coal measures is the basis for expediting the optimization of coal measure gas co-production. Through the analysis of drill cores and log data of Upper Carboniferous Benxi Formation to the member 8 of Middle Permian Lower Shihezi Formation in Daning-Jixian block, eastern margin of Ordos Basin, four distinct superimposed coal measure gas-bearing systems were identified, and their formation mechanism was discussed from the sequence stratigraphic perspective. Type I system mainly contains multiple coal seams, shales and sandstone layers. Type II system is dominated by multiple coal seams and shales. Type III is characterized by multiple sandstone layers, and type IV system is dominated by limestones and mudstones. In general, the gas-bearing systems deposited in barrier-lagoon are type II, those deposited in carbonate tidal flats are type IV, and those deposited in the delta front are types I and III. The marine mudstone, acting as a key layer near the maximum flooding surface, exhibits very low permeability, which is the main factor contributing to the formation of superimposed gas-bearing systems. The sedimentary environment plays a significant role in controlling the distribution of gas-bearing systems. Notably, the vertical gas-bearing systems in the south-western region, where delta front and lagoon facies overlap, are more complex than those in the north-eastern delta front facies.</p>\",\"PeriodicalId\":48927,\"journal\":{\"name\":\"Frontiers of Earth Science\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Earth Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s11707-024-1098-x\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Earth Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11707-024-1098-x","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

煤层中叠加含气系统的识别是加快优化煤层气共生的基础。通过对鄂尔多斯盆地东缘大宁-集贤区块石炭系上统本溪组至二叠系中统下统石河子组第8层钻孔岩心和测井资料的分析,确定了四个不同的煤系叠加含气系统,并从层序角度探讨了其形成机理。Ⅰ型系统主要包含多煤层、页岩和砂岩层。Ⅱ型系统以多煤层和页岩为主。III 型系统以多层砂岩为主,IV 型系统以灰岩和泥岩为主。一般来说,沉积在屏障泻湖的含气系统为 II 型,沉积在碳酸盐滩涂的含气系统为 IV 型,沉积在三角洲前沿的含气系统为 I 型和 III 型。海相泥岩是最大洪水面附近的关键层,其渗透率非常低,是形成叠加含气系统的主要因素。沉积环境对含气系统的分布起着重要的控制作用。值得注意的是,三角洲前缘面和泻湖面重叠的西南部地区的垂直含气系统比东北部三角洲前缘面的含气系统更为复杂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sequence stratigraphic analysis of superimposed coal measure gas-bearing system in Daning-Jixian block, eastern margin of Ordos Basin, China

The identification of superimposed gas-bearing systems in coal measures is the basis for expediting the optimization of coal measure gas co-production. Through the analysis of drill cores and log data of Upper Carboniferous Benxi Formation to the member 8 of Middle Permian Lower Shihezi Formation in Daning-Jixian block, eastern margin of Ordos Basin, four distinct superimposed coal measure gas-bearing systems were identified, and their formation mechanism was discussed from the sequence stratigraphic perspective. Type I system mainly contains multiple coal seams, shales and sandstone layers. Type II system is dominated by multiple coal seams and shales. Type III is characterized by multiple sandstone layers, and type IV system is dominated by limestones and mudstones. In general, the gas-bearing systems deposited in barrier-lagoon are type II, those deposited in carbonate tidal flats are type IV, and those deposited in the delta front are types I and III. The marine mudstone, acting as a key layer near the maximum flooding surface, exhibits very low permeability, which is the main factor contributing to the formation of superimposed gas-bearing systems. The sedimentary environment plays a significant role in controlling the distribution of gas-bearing systems. Notably, the vertical gas-bearing systems in the south-western region, where delta front and lagoon facies overlap, are more complex than those in the north-eastern delta front facies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers of Earth Science
Frontiers of Earth Science GEOSCIENCES, MULTIDISCIPLINARY-
CiteScore
3.50
自引率
5.00%
发文量
627
期刊介绍: Frontiers of Earth Science publishes original, peer-reviewed, theoretical and experimental frontier research papers as well as significant review articles of more general interest to earth scientists. The journal features articles dealing with observations, patterns, processes, and modeling of both innerspheres (including deep crust, mantle, and core) and outerspheres (including atmosphere, hydrosphere, and biosphere) of the earth. Its aim is to promote communication and share knowledge among the international earth science communities
期刊最新文献
Case studies of hailstorms in Shandong Province using hail size discrimination algorithm based on dual Polarimetric parameters Experimental analysis of dust deposition and physical weathering intensity in the Gobi Desert Sedimentary architecture of a sandy braided river with seasonal hydrodynamic variations: insights from the Permian Lower Shihezi Formation, Ordos Basin, China Projected changes of runoff in the Upper Yellow River Basin under shared socioeconomic pathways Applying 3D geological modeling to predict favorable areas for coalbed methane accumulation: a case study in the Qinshui Basin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1