Willem Delabie, Dominique De Bleser, Vicky Vandewalle, Marie-Laurence De Prest, Philippe Vandekerckhove, Veerle Compernolle, Hendrik B. Feys
{"title":"阿莫托沙林光化学病原体灭活对人体血小板裂解液的影响","authors":"Willem Delabie, Dominique De Bleser, Vicky Vandewalle, Marie-Laurence De Prest, Philippe Vandekerckhove, Veerle Compernolle, Hendrik B. Feys","doi":"10.2174/011574888x307274240610113314","DOIUrl":null,"url":null,"abstract":"Background: Human Platelet Lysate (hPL) is a platelet-derived and growth factor-rich supplement for cell culture. It can be prepared from surplus platelet concentrates initially intended for transfusion. Amotosalen-based photochemical pathogen inactivation of platelet concentrates is used in a number of blood establishments worldwide to minimize the risk of pathogen transmission from donor to patient. Method: This pathogen inactivation method has not been formally validated for direct use on hPL. Here, we have studied the impact of pathogen inactivation on hPL and compared it to untreated hPL prepared from pathogen-inactivated platelet concentrates or control hPL. We used mass spectrometry, ELISA, and in vitro mesenchymal stem cell culture for determining residual amotosalen, final growth factor content, and cell doubling, respectively. Result: The data have shown amotosalen concentrations to be reduced a thousand-fold following pathogen inactivation, leaving trace quantities of photosensitizer molecules in the final hPL product. Some growth factors have been reported to be significantly more impacted in hPL that is directly pathogen-inactivated compared to both control conditions. This has no significant effect on the growth kinetics of adipose-derived mesenchymal stem cells. Conclusion: We have concluded direct amotosalen-based pathogen inactivation to have a measurable impact on certain growth factors in hPL, but this does not outweigh the likely benefits of reducing the odds of donor-to-patient pathogen transmission.","PeriodicalId":10979,"journal":{"name":"Current stem cell research & therapy","volume":"44 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Impact of Amotosalen Photochemical Pathogen Inactivation on Human Platelet Lysate\",\"authors\":\"Willem Delabie, Dominique De Bleser, Vicky Vandewalle, Marie-Laurence De Prest, Philippe Vandekerckhove, Veerle Compernolle, Hendrik B. Feys\",\"doi\":\"10.2174/011574888x307274240610113314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Human Platelet Lysate (hPL) is a platelet-derived and growth factor-rich supplement for cell culture. It can be prepared from surplus platelet concentrates initially intended for transfusion. Amotosalen-based photochemical pathogen inactivation of platelet concentrates is used in a number of blood establishments worldwide to minimize the risk of pathogen transmission from donor to patient. Method: This pathogen inactivation method has not been formally validated for direct use on hPL. Here, we have studied the impact of pathogen inactivation on hPL and compared it to untreated hPL prepared from pathogen-inactivated platelet concentrates or control hPL. We used mass spectrometry, ELISA, and in vitro mesenchymal stem cell culture for determining residual amotosalen, final growth factor content, and cell doubling, respectively. Result: The data have shown amotosalen concentrations to be reduced a thousand-fold following pathogen inactivation, leaving trace quantities of photosensitizer molecules in the final hPL product. Some growth factors have been reported to be significantly more impacted in hPL that is directly pathogen-inactivated compared to both control conditions. This has no significant effect on the growth kinetics of adipose-derived mesenchymal stem cells. Conclusion: We have concluded direct amotosalen-based pathogen inactivation to have a measurable impact on certain growth factors in hPL, but this does not outweigh the likely benefits of reducing the odds of donor-to-patient pathogen transmission.\",\"PeriodicalId\":10979,\"journal\":{\"name\":\"Current stem cell research & therapy\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current stem cell research & therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/011574888x307274240610113314\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current stem cell research & therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/011574888x307274240610113314","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
The Impact of Amotosalen Photochemical Pathogen Inactivation on Human Platelet Lysate
Background: Human Platelet Lysate (hPL) is a platelet-derived and growth factor-rich supplement for cell culture. It can be prepared from surplus platelet concentrates initially intended for transfusion. Amotosalen-based photochemical pathogen inactivation of platelet concentrates is used in a number of blood establishments worldwide to minimize the risk of pathogen transmission from donor to patient. Method: This pathogen inactivation method has not been formally validated for direct use on hPL. Here, we have studied the impact of pathogen inactivation on hPL and compared it to untreated hPL prepared from pathogen-inactivated platelet concentrates or control hPL. We used mass spectrometry, ELISA, and in vitro mesenchymal stem cell culture for determining residual amotosalen, final growth factor content, and cell doubling, respectively. Result: The data have shown amotosalen concentrations to be reduced a thousand-fold following pathogen inactivation, leaving trace quantities of photosensitizer molecules in the final hPL product. Some growth factors have been reported to be significantly more impacted in hPL that is directly pathogen-inactivated compared to both control conditions. This has no significant effect on the growth kinetics of adipose-derived mesenchymal stem cells. Conclusion: We have concluded direct amotosalen-based pathogen inactivation to have a measurable impact on certain growth factors in hPL, but this does not outweigh the likely benefits of reducing the odds of donor-to-patient pathogen transmission.
期刊介绍:
Current Stem Cell Research & Therapy publishes high quality frontier reviews, drug clinical trial studies and guest edited issues on all aspects of basic research on stem cells and their uses in clinical therapy. The journal is essential reading for all researchers and clinicians involved in stem cells research.