Gabriele Carullo, Sara Rossi, Valentina Giudice, Alex Pezzotta, Ugo Chianese, Pasqualina Scala, Sabrina Carbone, Anna Fontana, Giovanna Panzeca, Silvia Pasquini, Chiara Contri, Sandra Gemma*, Anna Ramunno, Simona Saponara, Francesca Galvani, Alessio Lodola, Marco Mor, Rosaria Benedetti, Carmine Selleri, Katia Varani, Stefania Butini, Lucia Altucci, Fabrizio Vincenzi, Anna Pistocchi and Giuseppe Campiani*,
{"title":"开发具有治疗 FMS 相关酪氨酸激酶 3/内部串联重复 (FLT3/ITD) 急性髓性白血病和其他血液恶性肿瘤潜力的表观遗传修饰剂","authors":"Gabriele Carullo, Sara Rossi, Valentina Giudice, Alex Pezzotta, Ugo Chianese, Pasqualina Scala, Sabrina Carbone, Anna Fontana, Giovanna Panzeca, Silvia Pasquini, Chiara Contri, Sandra Gemma*, Anna Ramunno, Simona Saponara, Francesca Galvani, Alessio Lodola, Marco Mor, Rosaria Benedetti, Carmine Selleri, Katia Varani, Stefania Butini, Lucia Altucci, Fabrizio Vincenzi, Anna Pistocchi and Giuseppe Campiani*, ","doi":"10.1021/acsptsci.4c00208","DOIUrl":null,"url":null,"abstract":"<p >Blood cancers encompass a group of diseases affecting the blood, bone marrow, or lymphatic system, representing the fourth most commonly diagnosed cancer worldwide. Leukemias are characterized by the dysregulated proliferation of myeloid and lymphoid cells with different rates of progression (acute or chronic). Among the chronic forms, hairy cell leukemia (HCL) is a rare disease, and no drugs have been approved to date. However, acute myeloid leukemia (AML) is one of the most aggressive malignancies, with a low survival rate, especially in cases with FLT3-ITD mutations. Epigenetic modifications have emerged as promising strategies for the treatment of blood cancers. Epigenetic modulators, such as histone deacetylase (HDAC) inhibitors, are increasingly used for targeted cancer therapy. New hydroxamic acid derivatives, preferentially inhibiting HDAC6 (<b>5a–q</b>), were developed and their efficacy was investigated in different blood cancers, including multiple myeloma (MM), HCL, and AML, pointing out their pro-apoptotic effect as the mechanism of cell death. Among the inhibitors described, <b>5c</b>, <b>5g,</b> and <b>5h</b> were able to rescue the hematopoietic phenotype <i>in vivo</i> using the FLT3-ITD zebrafish model of AML. <b>5c</b> (<i>leuxinostat</i>) proved its efficacy in cells from FLT3-ITD AML patients, promoting marked acetylation of α-tubulin compared to histone H3, thereby confirming HDAC6 as a preferential target for this new class of hydroxamic acid derivatives at the tested doses.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"7 7","pages":"2125–2142"},"PeriodicalIF":4.9000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Epigenetic Modifiers with Therapeutic Potential in FMS-Related Tyrosine Kinase 3/Internal Tandem Duplication (FLT3/ITD) Acute Myeloid Leukemia and Other Blood Malignancies\",\"authors\":\"Gabriele Carullo, Sara Rossi, Valentina Giudice, Alex Pezzotta, Ugo Chianese, Pasqualina Scala, Sabrina Carbone, Anna Fontana, Giovanna Panzeca, Silvia Pasquini, Chiara Contri, Sandra Gemma*, Anna Ramunno, Simona Saponara, Francesca Galvani, Alessio Lodola, Marco Mor, Rosaria Benedetti, Carmine Selleri, Katia Varani, Stefania Butini, Lucia Altucci, Fabrizio Vincenzi, Anna Pistocchi and Giuseppe Campiani*, \",\"doi\":\"10.1021/acsptsci.4c00208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Blood cancers encompass a group of diseases affecting the blood, bone marrow, or lymphatic system, representing the fourth most commonly diagnosed cancer worldwide. Leukemias are characterized by the dysregulated proliferation of myeloid and lymphoid cells with different rates of progression (acute or chronic). Among the chronic forms, hairy cell leukemia (HCL) is a rare disease, and no drugs have been approved to date. However, acute myeloid leukemia (AML) is one of the most aggressive malignancies, with a low survival rate, especially in cases with FLT3-ITD mutations. Epigenetic modifications have emerged as promising strategies for the treatment of blood cancers. Epigenetic modulators, such as histone deacetylase (HDAC) inhibitors, are increasingly used for targeted cancer therapy. New hydroxamic acid derivatives, preferentially inhibiting HDAC6 (<b>5a–q</b>), were developed and their efficacy was investigated in different blood cancers, including multiple myeloma (MM), HCL, and AML, pointing out their pro-apoptotic effect as the mechanism of cell death. Among the inhibitors described, <b>5c</b>, <b>5g,</b> and <b>5h</b> were able to rescue the hematopoietic phenotype <i>in vivo</i> using the FLT3-ITD zebrafish model of AML. <b>5c</b> (<i>leuxinostat</i>) proved its efficacy in cells from FLT3-ITD AML patients, promoting marked acetylation of α-tubulin compared to histone H3, thereby confirming HDAC6 as a preferential target for this new class of hydroxamic acid derivatives at the tested doses.</p>\",\"PeriodicalId\":36426,\"journal\":{\"name\":\"ACS Pharmacology and Translational Science\",\"volume\":\"7 7\",\"pages\":\"2125–2142\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Pharmacology and Translational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsptsci.4c00208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Pharmacology and Translational Science","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsptsci.4c00208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Development of Epigenetic Modifiers with Therapeutic Potential in FMS-Related Tyrosine Kinase 3/Internal Tandem Duplication (FLT3/ITD) Acute Myeloid Leukemia and Other Blood Malignancies
Blood cancers encompass a group of diseases affecting the blood, bone marrow, or lymphatic system, representing the fourth most commonly diagnosed cancer worldwide. Leukemias are characterized by the dysregulated proliferation of myeloid and lymphoid cells with different rates of progression (acute or chronic). Among the chronic forms, hairy cell leukemia (HCL) is a rare disease, and no drugs have been approved to date. However, acute myeloid leukemia (AML) is one of the most aggressive malignancies, with a low survival rate, especially in cases with FLT3-ITD mutations. Epigenetic modifications have emerged as promising strategies for the treatment of blood cancers. Epigenetic modulators, such as histone deacetylase (HDAC) inhibitors, are increasingly used for targeted cancer therapy. New hydroxamic acid derivatives, preferentially inhibiting HDAC6 (5a–q), were developed and their efficacy was investigated in different blood cancers, including multiple myeloma (MM), HCL, and AML, pointing out their pro-apoptotic effect as the mechanism of cell death. Among the inhibitors described, 5c, 5g, and 5h were able to rescue the hematopoietic phenotype in vivo using the FLT3-ITD zebrafish model of AML. 5c (leuxinostat) proved its efficacy in cells from FLT3-ITD AML patients, promoting marked acetylation of α-tubulin compared to histone H3, thereby confirming HDAC6 as a preferential target for this new class of hydroxamic acid derivatives at the tested doses.
期刊介绍:
ACS Pharmacology & Translational Science publishes high quality, innovative, and impactful research across the broad spectrum of biological sciences, covering basic and molecular sciences through to translational preclinical studies. Clinical studies that address novel mechanisms of action, and methodological papers that provide innovation, and advance translation, will also be considered. We give priority to studies that fully integrate basic pharmacological and/or biochemical findings into physiological processes that have translational potential in a broad range of biomedical disciplines. Therefore, studies that employ a complementary blend of in vitro and in vivo systems are of particular interest to the journal. Nonetheless, all innovative and impactful research that has an articulated translational relevance will be considered.
ACS Pharmacology & Translational Science does not publish research on biological extracts that have unknown concentration or unknown chemical composition.
Authors are encouraged to use the pre-submission inquiry mechanism to ensure relevance and appropriateness of research.