基于 qth Rung Root Orthopair 模糊集的一些运算符及其在多标准决策中的应用

IF 3.6 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS International Journal of Fuzzy Systems Pub Date : 2024-06-17 DOI:10.1007/s40815-024-01695-2
Yan Liu, Zhaojun Yang, Jialong He, Guofa Li, Ruiliang Zhang
{"title":"基于 qth Rung Root Orthopair 模糊集的一些运算符及其在多标准决策中的应用","authors":"Yan Liu, Zhaojun Yang, Jialong He, Guofa Li, Ruiliang Zhang","doi":"10.1007/s40815-024-01695-2","DOIUrl":null,"url":null,"abstract":"<p>Intuitionistic fuzzy sets have been widely studied and applied as an important means of dealing with information uncertainty. However, the existing intuitionistic fuzzy sets and their extension methods are limited and single in their fuzzy spatial representation of information. Under this environment, this paper proposes a new generalized fuzzy set, called <i>q</i>th Rung Root Orthopair Fuzzy Sets (<i>q</i>-RROFS). Since the <i>q</i>-RROFS can adjust the range of fuzzy space expression by the parameter <i>q</i>, it is superior to intuitionistic fuzzy sets, SR-fuzzy sets, and CR-fuzzy sets. We give some definitions and properties of <i>q</i>-RROFS and give their proofs. Under the <i>q</i>-RROFS, we give its operations and properties and introduce four new weighted aggregation operators, namely, <i>q</i>th Rung Root Orthopair Fuzzy-weighted average operator (<i>q</i>-RROFWA), <i>q</i>th Rung Root Orthopair Fuzzy-weighted geometric operator (<i>q</i>-RROFWG), <i>q</i>th Rung Root Orthopair Fuzzy-weighted power average operator (<i>q</i>-RROFWPA), and <i>q</i>th Rung Root Orthopair Fuzzy-weighted power geometric operator (<i>q</i>-RROFWPG). We discuss the properties of these operators in detail and follow the proof procedure. Then, we give a Multi-criteria decision-making approach under <i>q</i>-RROFS. Finally, we illustrate the effectiveness and applicability of the proposed methodology through practical application examples and comparisons with other methods.</p>","PeriodicalId":14056,"journal":{"name":"International Journal of Fuzzy Systems","volume":"40 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some Operators Based on qth Rung Root Orthopair Fuzzy Sets and Their Application in Multi-criteria Decision Making\",\"authors\":\"Yan Liu, Zhaojun Yang, Jialong He, Guofa Li, Ruiliang Zhang\",\"doi\":\"10.1007/s40815-024-01695-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Intuitionistic fuzzy sets have been widely studied and applied as an important means of dealing with information uncertainty. However, the existing intuitionistic fuzzy sets and their extension methods are limited and single in their fuzzy spatial representation of information. Under this environment, this paper proposes a new generalized fuzzy set, called <i>q</i>th Rung Root Orthopair Fuzzy Sets (<i>q</i>-RROFS). Since the <i>q</i>-RROFS can adjust the range of fuzzy space expression by the parameter <i>q</i>, it is superior to intuitionistic fuzzy sets, SR-fuzzy sets, and CR-fuzzy sets. We give some definitions and properties of <i>q</i>-RROFS and give their proofs. Under the <i>q</i>-RROFS, we give its operations and properties and introduce four new weighted aggregation operators, namely, <i>q</i>th Rung Root Orthopair Fuzzy-weighted average operator (<i>q</i>-RROFWA), <i>q</i>th Rung Root Orthopair Fuzzy-weighted geometric operator (<i>q</i>-RROFWG), <i>q</i>th Rung Root Orthopair Fuzzy-weighted power average operator (<i>q</i>-RROFWPA), and <i>q</i>th Rung Root Orthopair Fuzzy-weighted power geometric operator (<i>q</i>-RROFWPG). We discuss the properties of these operators in detail and follow the proof procedure. Then, we give a Multi-criteria decision-making approach under <i>q</i>-RROFS. Finally, we illustrate the effectiveness and applicability of the proposed methodology through practical application examples and comparisons with other methods.</p>\",\"PeriodicalId\":14056,\"journal\":{\"name\":\"International Journal of Fuzzy Systems\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fuzzy Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s40815-024-01695-2\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fuzzy Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40815-024-01695-2","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

直觉模糊集作为处理信息不确定性的一种重要手段,已被广泛研究和应用。然而,现有的直观模糊集及其扩展方法在信息的模糊空间表示方面存在局限性和单一性。在这种环境下,本文提出了一种新的广义模糊集,即 qth Rung Root Orthopair Fuzzy Sets(q-RROFS)。由于 q-RROFS 可以通过参数 q 来调整模糊空间表达的范围,因此它优于直觉模糊集、SR-模糊集和 CR-模糊集。我们给出了 q-RROFS 的一些定义和性质,并给出了它们的证明。在 q-RROFS 下,我们给出了它的运算和性质,并引入了四个新的加权聚合算子,即 qth Rung Root Orthopair Fuzzy-weighted average 算子(q-RROFWA)、qth Rung Root Orthopair Fuzzy-weighted geometric operator (q-RROFWG)、qth Rung Root Orthopair Fuzzy-weighted power average operator (q-RROFWPA) 和 qth Rung Root Orthopair Fuzzy-weighted power geometric operator (q-RROFWPG)。我们将详细讨论这些算子的特性,并遵循证明过程。然后,我们给出了 q-RROFS 下的多标准决策方法。最后,我们通过实际应用实例以及与其他方法的比较,说明了所提方法的有效性和适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Some Operators Based on qth Rung Root Orthopair Fuzzy Sets and Their Application in Multi-criteria Decision Making

Intuitionistic fuzzy sets have been widely studied and applied as an important means of dealing with information uncertainty. However, the existing intuitionistic fuzzy sets and their extension methods are limited and single in their fuzzy spatial representation of information. Under this environment, this paper proposes a new generalized fuzzy set, called qth Rung Root Orthopair Fuzzy Sets (q-RROFS). Since the q-RROFS can adjust the range of fuzzy space expression by the parameter q, it is superior to intuitionistic fuzzy sets, SR-fuzzy sets, and CR-fuzzy sets. We give some definitions and properties of q-RROFS and give their proofs. Under the q-RROFS, we give its operations and properties and introduce four new weighted aggregation operators, namely, qth Rung Root Orthopair Fuzzy-weighted average operator (q-RROFWA), qth Rung Root Orthopair Fuzzy-weighted geometric operator (q-RROFWG), qth Rung Root Orthopair Fuzzy-weighted power average operator (q-RROFWPA), and qth Rung Root Orthopair Fuzzy-weighted power geometric operator (q-RROFWPG). We discuss the properties of these operators in detail and follow the proof procedure. Then, we give a Multi-criteria decision-making approach under q-RROFS. Finally, we illustrate the effectiveness and applicability of the proposed methodology through practical application examples and comparisons with other methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Fuzzy Systems
International Journal of Fuzzy Systems 工程技术-计算机:人工智能
CiteScore
7.80
自引率
9.30%
发文量
188
审稿时长
16 months
期刊介绍: The International Journal of Fuzzy Systems (IJFS) is an official journal of Taiwan Fuzzy Systems Association (TFSA) and is published semi-quarterly. IJFS will consider high quality papers that deal with the theory, design, and application of fuzzy systems, soft computing systems, grey systems, and extension theory systems ranging from hardware to software. Survey and expository submissions are also welcome.
期刊最新文献
Event-Based Finite-Time $$H_\infty $$ Security Control for Networked Control Systems with Deception Attacks A Distance-Based Approach to Fuzzy Cognitive Maps Using Pythagorean Fuzzy Sets Relaxed Stability and Non-weighted $$L_2$$ -Gain Analysis for Asynchronously Switched Polynomial Fuzzy Systems Nonsingular Fast Terminal Sliding Mode Control of Uncertain Robotic Manipulator System Based on Adaptive Fuzzy Wavelet Neural Network Efficient and Effective Anomaly Detection in Autonomous Vehicles: A Combination of Gradient Boosting and ANFIS Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1