Yu Xing, Xiaoxuan Wang, Lin Lu, Andrei Sharf, Daniel Cohen-Or, Changhe Tu
{"title":"外壳支架:用于三维制造的稳定薄壳模型","authors":"Yu Xing, Xiaoxuan Wang, Lin Lu, Andrei Sharf, Daniel Cohen-Or, Changhe Tu","doi":"10.1007/s41095-024-0402-8","DOIUrl":null,"url":null,"abstract":"<p>A thin shell model refers to a surface or structure, where the object’s thickness is considered negligible. In the context of 3D printing, thin shell models are characterized by having lightweight, hollow structures, and reduced material usage. Their versatility and visual appeal make them popular in various fields, such as cloth simulation, character skinning, and for thin-walled structures like leaves, paper, or metal sheets. Nevertheless, optimization of thin shell models without external support remains a challenge due to their minimal interior operational space. For the same reasons, hollowing methods are also unsuitable for this task. In fact, thin shell modulation methods are required to preserve the visual appearance of a two-sided surface which further constrain the problem space. In this paper, we introduce a new visual disparity metric tailored for shell models, integrating local details and global shape attributes in terms of visual perception. Our method modulates thin shell models using global deformations and local thickening while accounting for visual saliency, stability, and structural integrity. Thereby, thin shell models such as bas-reliefs, hollow shapes, and cloth can be stabilized to stand in arbitrary orientations, making them ideal for 3D printing.</p>","PeriodicalId":37301,"journal":{"name":"Computational Visual Media","volume":null,"pages":null},"PeriodicalIF":17.3000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shell stand: Stable thin shell models for 3D fabrication\",\"authors\":\"Yu Xing, Xiaoxuan Wang, Lin Lu, Andrei Sharf, Daniel Cohen-Or, Changhe Tu\",\"doi\":\"10.1007/s41095-024-0402-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A thin shell model refers to a surface or structure, where the object’s thickness is considered negligible. In the context of 3D printing, thin shell models are characterized by having lightweight, hollow structures, and reduced material usage. Their versatility and visual appeal make them popular in various fields, such as cloth simulation, character skinning, and for thin-walled structures like leaves, paper, or metal sheets. Nevertheless, optimization of thin shell models without external support remains a challenge due to their minimal interior operational space. For the same reasons, hollowing methods are also unsuitable for this task. In fact, thin shell modulation methods are required to preserve the visual appearance of a two-sided surface which further constrain the problem space. In this paper, we introduce a new visual disparity metric tailored for shell models, integrating local details and global shape attributes in terms of visual perception. Our method modulates thin shell models using global deformations and local thickening while accounting for visual saliency, stability, and structural integrity. Thereby, thin shell models such as bas-reliefs, hollow shapes, and cloth can be stabilized to stand in arbitrary orientations, making them ideal for 3D printing.</p>\",\"PeriodicalId\":37301,\"journal\":{\"name\":\"Computational Visual Media\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Visual Media\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s41095-024-0402-8\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Visual Media","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s41095-024-0402-8","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Shell stand: Stable thin shell models for 3D fabrication
A thin shell model refers to a surface or structure, where the object’s thickness is considered negligible. In the context of 3D printing, thin shell models are characterized by having lightweight, hollow structures, and reduced material usage. Their versatility and visual appeal make them popular in various fields, such as cloth simulation, character skinning, and for thin-walled structures like leaves, paper, or metal sheets. Nevertheless, optimization of thin shell models without external support remains a challenge due to their minimal interior operational space. For the same reasons, hollowing methods are also unsuitable for this task. In fact, thin shell modulation methods are required to preserve the visual appearance of a two-sided surface which further constrain the problem space. In this paper, we introduce a new visual disparity metric tailored for shell models, integrating local details and global shape attributes in terms of visual perception. Our method modulates thin shell models using global deformations and local thickening while accounting for visual saliency, stability, and structural integrity. Thereby, thin shell models such as bas-reliefs, hollow shapes, and cloth can be stabilized to stand in arbitrary orientations, making them ideal for 3D printing.
期刊介绍:
Computational Visual Media is a peer-reviewed open access journal. It publishes original high-quality research papers and significant review articles on novel ideas, methods, and systems relevant to visual media.
Computational Visual Media publishes articles that focus on, but are not limited to, the following areas:
• Editing and composition of visual media
• Geometric computing for images and video
• Geometry modeling and processing
• Machine learning for visual media
• Physically based animation
• Realistic rendering
• Recognition and understanding of visual media
• Visual computing for robotics
• Visualization and visual analytics
Other interdisciplinary research into visual media that combines aspects of computer graphics, computer vision, image and video processing, geometric computing, and machine learning is also within the journal''s scope.
This is an open access journal, published quarterly by Tsinghua University Press and Springer. The open access fees (article-processing charges) are fully sponsored by Tsinghua University, China. Authors can publish in the journal without any additional charges.