{"title":"与新生代盆地形成有关的岩浆下溢:印度邦德尔康德克拉通南缘重力研究的启示","authors":"Ananya Parthapradip Mukherjee, Animesh Mandal","doi":"10.5194/se-15-711-2024","DOIUrl":null,"url":null,"abstract":"Abstract. Extension tectonics responsible for intracratonic rift basin formation are often the consequences of active or passive tectonic regimes. The present work puts forth a plume-related rifting mechanism for the creation and evolution of two Proterozoic sedimentary basins outlining the Bundelkhand Craton, namely the Bijawar and Vindhyan basins. Using global gravity data, a regional-scale study is performed over the region encompassing the southern boundary of the Bundelkhand Craton consisting of the Bijawar Basin, Vindhyan Basin, and Deccan basalt outcrops. The gravity highs in the central part of the complete Bouguer anomaly and the upward-continued regional anomaly, derived from global gravity grid data, suggest that the Vindhyan sedimentary basin overlies a deeper high-density crustal source. The deepest interface as obtained from the radially averaged power spectrum analysis is observed to occur at a depth of ∼30.3 km, indicating that the sources responsible for the observed gravity signatures occur at larger depths. The 3D inversion of complete Bouguer anomaly data based on Parker–Oldenburg's algorithm revealed the Moho depth of ∼32 km below the Vindhyan Basin, i.e., south of the craton. The 2D crustal models along two selected profiles showcase a thick underplated layer with a maximum thickness of ∼12 km beneath the southern part of the Bundelkhand Craton. The inferred large E–W-trending underplating and deciphered shallower Moho beneath the regions south of the exposed Bundelkhand Craton point to crustal thinning compensated for magmatic emplacement due to a Paleoproterozoic plume activity below the craton margin.","PeriodicalId":21912,"journal":{"name":"Solid Earth","volume":"124 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magmatic underplating associated with Proterozoic basin formation: insights from gravity study over the southern margin of the Bundelkhand Craton, India\",\"authors\":\"Ananya Parthapradip Mukherjee, Animesh Mandal\",\"doi\":\"10.5194/se-15-711-2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Extension tectonics responsible for intracratonic rift basin formation are often the consequences of active or passive tectonic regimes. The present work puts forth a plume-related rifting mechanism for the creation and evolution of two Proterozoic sedimentary basins outlining the Bundelkhand Craton, namely the Bijawar and Vindhyan basins. Using global gravity data, a regional-scale study is performed over the region encompassing the southern boundary of the Bundelkhand Craton consisting of the Bijawar Basin, Vindhyan Basin, and Deccan basalt outcrops. The gravity highs in the central part of the complete Bouguer anomaly and the upward-continued regional anomaly, derived from global gravity grid data, suggest that the Vindhyan sedimentary basin overlies a deeper high-density crustal source. The deepest interface as obtained from the radially averaged power spectrum analysis is observed to occur at a depth of ∼30.3 km, indicating that the sources responsible for the observed gravity signatures occur at larger depths. The 3D inversion of complete Bouguer anomaly data based on Parker–Oldenburg's algorithm revealed the Moho depth of ∼32 km below the Vindhyan Basin, i.e., south of the craton. The 2D crustal models along two selected profiles showcase a thick underplated layer with a maximum thickness of ∼12 km beneath the southern part of the Bundelkhand Craton. The inferred large E–W-trending underplating and deciphered shallower Moho beneath the regions south of the exposed Bundelkhand Craton point to crustal thinning compensated for magmatic emplacement due to a Paleoproterozoic plume activity below the craton margin.\",\"PeriodicalId\":21912,\"journal\":{\"name\":\"Solid Earth\",\"volume\":\"124 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid Earth\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/se-15-711-2024\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/se-15-711-2024","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Magmatic underplating associated with Proterozoic basin formation: insights from gravity study over the southern margin of the Bundelkhand Craton, India
Abstract. Extension tectonics responsible for intracratonic rift basin formation are often the consequences of active or passive tectonic regimes. The present work puts forth a plume-related rifting mechanism for the creation and evolution of two Proterozoic sedimentary basins outlining the Bundelkhand Craton, namely the Bijawar and Vindhyan basins. Using global gravity data, a regional-scale study is performed over the region encompassing the southern boundary of the Bundelkhand Craton consisting of the Bijawar Basin, Vindhyan Basin, and Deccan basalt outcrops. The gravity highs in the central part of the complete Bouguer anomaly and the upward-continued regional anomaly, derived from global gravity grid data, suggest that the Vindhyan sedimentary basin overlies a deeper high-density crustal source. The deepest interface as obtained from the radially averaged power spectrum analysis is observed to occur at a depth of ∼30.3 km, indicating that the sources responsible for the observed gravity signatures occur at larger depths. The 3D inversion of complete Bouguer anomaly data based on Parker–Oldenburg's algorithm revealed the Moho depth of ∼32 km below the Vindhyan Basin, i.e., south of the craton. The 2D crustal models along two selected profiles showcase a thick underplated layer with a maximum thickness of ∼12 km beneath the southern part of the Bundelkhand Craton. The inferred large E–W-trending underplating and deciphered shallower Moho beneath the regions south of the exposed Bundelkhand Craton point to crustal thinning compensated for magmatic emplacement due to a Paleoproterozoic plume activity below the craton margin.
期刊介绍:
Solid Earth (SE) is a not-for-profit journal that publishes multidisciplinary research on the composition, structure, dynamics of the Earth from the surface to the deep interior at all spatial and temporal scales. The journal invites contributions encompassing observational, experimental, and theoretical investigations in the form of short communications, research articles, method articles, review articles, and discussion and commentaries on all aspects of the solid Earth (for details see manuscript types). Being interdisciplinary in scope, SE covers the following disciplines:
geochemistry, mineralogy, petrology, volcanology;
geodesy and gravity;
geodynamics: numerical and analogue modeling of geoprocesses;
geoelectrics and electromagnetics;
geomagnetism;
geomorphology, morphotectonics, and paleoseismology;
rock physics;
seismics and seismology;
critical zone science (Earth''s permeable near-surface layer);
stratigraphy, sedimentology, and palaeontology;
rock deformation, structural geology, and tectonics.