{"title":"Motioninsights:流媒体视频中的实时物体跟踪","authors":"Dimitrios Banelas, Euripides G. M. Petrakis","doi":"10.1007/s00138-024-01570-y","DOIUrl":null,"url":null,"abstract":"<p>MotionInsights facilitates object detection and tracking from multiple video streams in real-time. Leveraging the distributed stream processing capabilities of Apache Flink and Apache Kafka (as an intermediate message broker), the system models video processing as a data flow stream processing pipeline. Each video frame is split into smaller blocks, which are dispatched to be processed in parallel by a number of Flink operators. In the first stage, each block undergoes background subtraction and component labeling. The connected components from each frame are grouped, and the eligible components are merged into objects. In the last stage of the pipeline, all objects from each frame are concentrated to produce the trajectory of each object. The Flink application is deployed as a Kubernetes cluster in the Google Cloud Platform. Experimenting in a Flink cluster with 7 machines, revealed that MotionInsights achieves up to 6 times speedup compared to a monolithic (nonparallel) implementation while providing accurate trajectory patterns. The highest (i.e., more than 6 times) speed-up was observed with video streams of the highest resolution. Compared to existing systems that use custom or proprietary architectures, MotionInsights is independent of the underlying hardware platform and can be deployed on common CPU architectures and the cloud.</p>","PeriodicalId":51116,"journal":{"name":"Machine Vision and Applications","volume":"34 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Motioninsights: real-time object tracking in streaming video\",\"authors\":\"Dimitrios Banelas, Euripides G. M. Petrakis\",\"doi\":\"10.1007/s00138-024-01570-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>MotionInsights facilitates object detection and tracking from multiple video streams in real-time. Leveraging the distributed stream processing capabilities of Apache Flink and Apache Kafka (as an intermediate message broker), the system models video processing as a data flow stream processing pipeline. Each video frame is split into smaller blocks, which are dispatched to be processed in parallel by a number of Flink operators. In the first stage, each block undergoes background subtraction and component labeling. The connected components from each frame are grouped, and the eligible components are merged into objects. In the last stage of the pipeline, all objects from each frame are concentrated to produce the trajectory of each object. The Flink application is deployed as a Kubernetes cluster in the Google Cloud Platform. Experimenting in a Flink cluster with 7 machines, revealed that MotionInsights achieves up to 6 times speedup compared to a monolithic (nonparallel) implementation while providing accurate trajectory patterns. The highest (i.e., more than 6 times) speed-up was observed with video streams of the highest resolution. Compared to existing systems that use custom or proprietary architectures, MotionInsights is independent of the underlying hardware platform and can be deployed on common CPU architectures and the cloud.</p>\",\"PeriodicalId\":51116,\"journal\":{\"name\":\"Machine Vision and Applications\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Vision and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00138-024-01570-y\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Vision and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00138-024-01570-y","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Motioninsights: real-time object tracking in streaming video
MotionInsights facilitates object detection and tracking from multiple video streams in real-time. Leveraging the distributed stream processing capabilities of Apache Flink and Apache Kafka (as an intermediate message broker), the system models video processing as a data flow stream processing pipeline. Each video frame is split into smaller blocks, which are dispatched to be processed in parallel by a number of Flink operators. In the first stage, each block undergoes background subtraction and component labeling. The connected components from each frame are grouped, and the eligible components are merged into objects. In the last stage of the pipeline, all objects from each frame are concentrated to produce the trajectory of each object. The Flink application is deployed as a Kubernetes cluster in the Google Cloud Platform. Experimenting in a Flink cluster with 7 machines, revealed that MotionInsights achieves up to 6 times speedup compared to a monolithic (nonparallel) implementation while providing accurate trajectory patterns. The highest (i.e., more than 6 times) speed-up was observed with video streams of the highest resolution. Compared to existing systems that use custom or proprietary architectures, MotionInsights is independent of the underlying hardware platform and can be deployed on common CPU architectures and the cloud.
期刊介绍:
Machine Vision and Applications publishes high-quality technical contributions in machine vision research and development. Specifically, the editors encourage submittals in all applications and engineering aspects of image-related computing. In particular, original contributions dealing with scientific, commercial, industrial, military, and biomedical applications of machine vision, are all within the scope of the journal.
Particular emphasis is placed on engineering and technology aspects of image processing and computer vision.
The following aspects of machine vision applications are of interest: algorithms, architectures, VLSI implementations, AI techniques and expert systems for machine vision, front-end sensing, multidimensional and multisensor machine vision, real-time techniques, image databases, virtual reality and visualization. Papers must include a significant experimental validation component.