如何在不同数据集之间推广 SER 模型?综合基准

Adham Ibrahim, Shady Shehata, Ajinkya Kulkarni, Mukhtar Mohamed, Muhammad Abdul-Mageed
{"title":"如何在不同数据集之间推广 SER 模型?综合基准","authors":"Adham Ibrahim, Shady Shehata, Ajinkya Kulkarni, Mukhtar Mohamed, Muhammad Abdul-Mageed","doi":"arxiv-2406.09933","DOIUrl":null,"url":null,"abstract":"Speech emotion recognition (SER) is essential for enhancing human-computer\ninteraction in speech-based applications. Despite improvements in specific\nemotional datasets, there is still a research gap in SER's capability to\ngeneralize across real-world situations. In this paper, we investigate\napproaches to generalize the SER system across different emotion datasets. In\nparticular, we incorporate 11 emotional speech datasets and illustrate a\ncomprehensive benchmark on the SER task. We also address the challenge of\nimbalanced data distribution using over-sampling methods when combining SER\ndatasets for training. Furthermore, we explore various evaluation protocols for\nadeptness in the generalization of SER. Building on this, we explore the\npotential of Whisper for SER, emphasizing the importance of thorough\nevaluation. Our approach is designed to advance SER technology by integrating\nspeaker-independent methods.","PeriodicalId":501178,"journal":{"name":"arXiv - CS - Sound","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"What Does it Take to Generalize SER Model Across Datasets? A Comprehensive Benchmark\",\"authors\":\"Adham Ibrahim, Shady Shehata, Ajinkya Kulkarni, Mukhtar Mohamed, Muhammad Abdul-Mageed\",\"doi\":\"arxiv-2406.09933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Speech emotion recognition (SER) is essential for enhancing human-computer\\ninteraction in speech-based applications. Despite improvements in specific\\nemotional datasets, there is still a research gap in SER's capability to\\ngeneralize across real-world situations. In this paper, we investigate\\napproaches to generalize the SER system across different emotion datasets. In\\nparticular, we incorporate 11 emotional speech datasets and illustrate a\\ncomprehensive benchmark on the SER task. We also address the challenge of\\nimbalanced data distribution using over-sampling methods when combining SER\\ndatasets for training. Furthermore, we explore various evaluation protocols for\\nadeptness in the generalization of SER. Building on this, we explore the\\npotential of Whisper for SER, emphasizing the importance of thorough\\nevaluation. Our approach is designed to advance SER technology by integrating\\nspeaker-independent methods.\",\"PeriodicalId\":501178,\"journal\":{\"name\":\"arXiv - CS - Sound\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Sound\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.09933\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Sound","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.09933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

语音情感识别(SER)对于增强语音应用中的人机交互至关重要。尽管在特定情感数据集方面有所改进,但在 SER 在现实世界中的泛化能力方面仍存在研究空白。在本文中,我们研究了将 SER 系统泛化到不同情感数据集的方法。特别是,我们纳入了 11 个情感语音数据集,并说明了 SER 任务的综合基准。我们还利用过度采样方法解决了在结合 SER 数据集进行训练时数据分布不平衡的难题。此外,我们还探索了各种评估协议,以评估 SER 的泛化能力。在此基础上,我们探讨了 Whisper 在 SER 方面的潜力,强调了彻底评估的重要性。我们的方法旨在通过整合与扬声器无关的方法来推动 SER 技术的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
What Does it Take to Generalize SER Model Across Datasets? A Comprehensive Benchmark
Speech emotion recognition (SER) is essential for enhancing human-computer interaction in speech-based applications. Despite improvements in specific emotional datasets, there is still a research gap in SER's capability to generalize across real-world situations. In this paper, we investigate approaches to generalize the SER system across different emotion datasets. In particular, we incorporate 11 emotional speech datasets and illustrate a comprehensive benchmark on the SER task. We also address the challenge of imbalanced data distribution using over-sampling methods when combining SER datasets for training. Furthermore, we explore various evaluation protocols for adeptness in the generalization of SER. Building on this, we explore the potential of Whisper for SER, emphasizing the importance of thorough evaluation. Our approach is designed to advance SER technology by integrating speaker-independent methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Explaining Deep Learning Embeddings for Speech Emotion Recognition by Predicting Interpretable Acoustic Features ESPnet-EZ: Python-only ESPnet for Easy Fine-tuning and Integration Prevailing Research Areas for Music AI in the Era of Foundation Models Egocentric Speaker Classification in Child-Adult Dyadic Interactions: From Sensing to Computational Modeling The T05 System for The VoiceMOS Challenge 2024: Transfer Learning from Deep Image Classifier to Naturalness MOS Prediction of High-Quality Synthetic Speech
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1