{"title":"基于兴趣区感知 OCTM 和 \"像素健康度 \"评估的低照度图像有效多尺度增强融合方法","authors":"Yi-lun Wang, Yi-zheng Lang, Yun-sheng Qian","doi":"10.1007/s00371-024-03554-5","DOIUrl":null,"url":null,"abstract":"<p>Low-light images suffer from low contrast and low dynamic range. However, most existing single-frame low-light image enhancement algorithms are not good enough in terms of detail preservation and color expression and often have high algorithmic complexity. In this paper, we propose a single-frame low-light image fusion enhancement algorithm based on multi-scale contrast–tone mapping and \"pixel healthiness\" evaluation. It can adaptively adjust the exposure level of each region according to the principal component in the image and enhance contrast while preserving color and detail expression with low computational complexity. In particular, to find the most appropriate size of the artificial image sequence and the target enhancement range for each image, we propose a multi-scale parameter determination method based on the principal component analysis of the V-channel histogram to obtain the best enhancement while reducing unnecessary computations. In addition, a new \"pixel healthiness\" evaluation method based on global illuminance and local contrast is proposed for fast and efficient computation of weights for image fusion. Subjective evaluation and objective metrics show that our algorithm performs better than existing single-frame image algorithms and other fusion-based algorithms in enhancement, contrast, color expression, and detail preservation.</p>","PeriodicalId":501186,"journal":{"name":"The Visual Computer","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effective multi-scale enhancement fusion method for low-light images based on interest-area perception OCTM and “pixel healthiness” evaluation\",\"authors\":\"Yi-lun Wang, Yi-zheng Lang, Yun-sheng Qian\",\"doi\":\"10.1007/s00371-024-03554-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Low-light images suffer from low contrast and low dynamic range. However, most existing single-frame low-light image enhancement algorithms are not good enough in terms of detail preservation and color expression and often have high algorithmic complexity. In this paper, we propose a single-frame low-light image fusion enhancement algorithm based on multi-scale contrast–tone mapping and \\\"pixel healthiness\\\" evaluation. It can adaptively adjust the exposure level of each region according to the principal component in the image and enhance contrast while preserving color and detail expression with low computational complexity. In particular, to find the most appropriate size of the artificial image sequence and the target enhancement range for each image, we propose a multi-scale parameter determination method based on the principal component analysis of the V-channel histogram to obtain the best enhancement while reducing unnecessary computations. In addition, a new \\\"pixel healthiness\\\" evaluation method based on global illuminance and local contrast is proposed for fast and efficient computation of weights for image fusion. Subjective evaluation and objective metrics show that our algorithm performs better than existing single-frame image algorithms and other fusion-based algorithms in enhancement, contrast, color expression, and detail preservation.</p>\",\"PeriodicalId\":501186,\"journal\":{\"name\":\"The Visual Computer\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Visual Computer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00371-024-03554-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Visual Computer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00371-024-03554-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
低照度图像具有低对比度和低动态范围的问题。然而,现有的单帧低照度图像增强算法大多在细节保留和色彩表达方面不够理想,而且算法复杂度往往较高。本文提出了一种基于多尺度对比度映射和 "像素健康度 "评估的单帧弱光图像融合增强算法。它能根据图像中的主成分自适应地调整每个区域的曝光水平,在增强对比度的同时保留色彩和细节表达,且计算复杂度较低。其中,为了找到最合适的人工图像序列大小和每幅图像的目标增强范围,我们提出了一种基于 V 信道直方图主成分分析的多尺度参数确定方法,以获得最佳增强效果,同时减少不必要的计算。此外,我们还提出了一种基于全局照度和局部对比度的新型 "像素健康度 "评估方法,用于快速高效地计算图像融合的权重。主观评价和客观指标表明,我们的算法在增强、对比度、色彩表达和细节保留方面都优于现有的单帧图像算法和其他基于融合的算法。
Effective multi-scale enhancement fusion method for low-light images based on interest-area perception OCTM and “pixel healthiness” evaluation
Low-light images suffer from low contrast and low dynamic range. However, most existing single-frame low-light image enhancement algorithms are not good enough in terms of detail preservation and color expression and often have high algorithmic complexity. In this paper, we propose a single-frame low-light image fusion enhancement algorithm based on multi-scale contrast–tone mapping and "pixel healthiness" evaluation. It can adaptively adjust the exposure level of each region according to the principal component in the image and enhance contrast while preserving color and detail expression with low computational complexity. In particular, to find the most appropriate size of the artificial image sequence and the target enhancement range for each image, we propose a multi-scale parameter determination method based on the principal component analysis of the V-channel histogram to obtain the best enhancement while reducing unnecessary computations. In addition, a new "pixel healthiness" evaluation method based on global illuminance and local contrast is proposed for fast and efficient computation of weights for image fusion. Subjective evaluation and objective metrics show that our algorithm performs better than existing single-frame image algorithms and other fusion-based algorithms in enhancement, contrast, color expression, and detail preservation.