{"title":"ZMNet:用于实时语义分割的特征融合和语义边界监督","authors":"Ya Li, Ziming Li, Huiwang Liu, Qing Wang","doi":"10.1007/s00371-024-03448-6","DOIUrl":null,"url":null,"abstract":"<p>Feature fusion module is an essential component of real-time semantic segmentation networks to bridge the semantic gap among different feature layers. However, many networks are inefficient in multi-level feature fusion. In this paper, we propose a simple yet effective decoder that consists of a series of multi-level attention feature fusion modules (MLA-FFMs) aimed at fusing multi-level features in a top-down manner. Specifically, MLA-FFM is a lightweight attention-based module. Therefore, it can not only efficiently fuse features to bridge the semantic gap at different levels, but also be applied to real-time segmentation tasks. In addition, to solve the problem of low accuracy of existing real-time segmentation methods at semantic boundaries, we propose a semantic boundary supervision module (BSM) to improve the accuracy by supervising the prediction of semantic boundaries. Extensive experiments demonstrate that our network achieves a state-of-the-art trade-off between segmentation accuracy and inference speed on both Cityscapes and CamVid datasets. On a single NVIDIA GeForce 1080Ti GPU, our model achieves 77.4% mIoU with a speed of 97.5 FPS on the Cityscapes test dataset, and 74% mIoU with a speed of 156.6 FPS on the CamVid test dataset, which is superior to most state-of-the-art real-time methods.</p>","PeriodicalId":501186,"journal":{"name":"The Visual Computer","volume":"174 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ZMNet: feature fusion and semantic boundary supervision for real-time semantic segmentation\",\"authors\":\"Ya Li, Ziming Li, Huiwang Liu, Qing Wang\",\"doi\":\"10.1007/s00371-024-03448-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Feature fusion module is an essential component of real-time semantic segmentation networks to bridge the semantic gap among different feature layers. However, many networks are inefficient in multi-level feature fusion. In this paper, we propose a simple yet effective decoder that consists of a series of multi-level attention feature fusion modules (MLA-FFMs) aimed at fusing multi-level features in a top-down manner. Specifically, MLA-FFM is a lightweight attention-based module. Therefore, it can not only efficiently fuse features to bridge the semantic gap at different levels, but also be applied to real-time segmentation tasks. In addition, to solve the problem of low accuracy of existing real-time segmentation methods at semantic boundaries, we propose a semantic boundary supervision module (BSM) to improve the accuracy by supervising the prediction of semantic boundaries. Extensive experiments demonstrate that our network achieves a state-of-the-art trade-off between segmentation accuracy and inference speed on both Cityscapes and CamVid datasets. On a single NVIDIA GeForce 1080Ti GPU, our model achieves 77.4% mIoU with a speed of 97.5 FPS on the Cityscapes test dataset, and 74% mIoU with a speed of 156.6 FPS on the CamVid test dataset, which is superior to most state-of-the-art real-time methods.</p>\",\"PeriodicalId\":501186,\"journal\":{\"name\":\"The Visual Computer\",\"volume\":\"174 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Visual Computer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00371-024-03448-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Visual Computer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00371-024-03448-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ZMNet: feature fusion and semantic boundary supervision for real-time semantic segmentation
Feature fusion module is an essential component of real-time semantic segmentation networks to bridge the semantic gap among different feature layers. However, many networks are inefficient in multi-level feature fusion. In this paper, we propose a simple yet effective decoder that consists of a series of multi-level attention feature fusion modules (MLA-FFMs) aimed at fusing multi-level features in a top-down manner. Specifically, MLA-FFM is a lightweight attention-based module. Therefore, it can not only efficiently fuse features to bridge the semantic gap at different levels, but also be applied to real-time segmentation tasks. In addition, to solve the problem of low accuracy of existing real-time segmentation methods at semantic boundaries, we propose a semantic boundary supervision module (BSM) to improve the accuracy by supervising the prediction of semantic boundaries. Extensive experiments demonstrate that our network achieves a state-of-the-art trade-off between segmentation accuracy and inference speed on both Cityscapes and CamVid datasets. On a single NVIDIA GeForce 1080Ti GPU, our model achieves 77.4% mIoU with a speed of 97.5 FPS on the Cityscapes test dataset, and 74% mIoU with a speed of 156.6 FPS on the CamVid test dataset, which is superior to most state-of-the-art real-time methods.