对同一马雷克氏病病毒株的多个共识基因组的比较分析揭示了株内变异

IF 5.5 2区 医学 Q1 VIROLOGY Virus Evolution Pub Date : 2024-06-21 DOI:10.1093/ve/veae047
Alejandro Ortigas-Vasquez, Utsav Pandey, Daniel Renner, Chris D Bowen, Susan J Baigent, John Dunn, Hans Cheng, Yongxiu Yao, Andrew F Read, Venugopal Nair, Dave A Kennedy, Moriah L Szpara
{"title":"对同一马雷克氏病病毒株的多个共识基因组的比较分析揭示了株内变异","authors":"Alejandro Ortigas-Vasquez, Utsav Pandey, Daniel Renner, Chris D Bowen, Susan J Baigent, John Dunn, Hans Cheng, Yongxiu Yao, Andrew F Read, Venugopal Nair, Dave A Kennedy, Moriah L Szpara","doi":"10.1093/ve/veae047","DOIUrl":null,"url":null,"abstract":"Current strategies to understand the molecular basis of Marek’s disease virus (MDV) virulence primarily consist of cataloguing divergent nucleotides between strains with different phenotypes. However, most comparative genomic studies of MDV rely on previously published consensus genomes despite the confirmed existence of MDV strains as mixed viral populations. To assess the reliability of interstrain genomic comparisons relying on published consensus genomes of MDV, we obtained two additional consensus genomes of vaccine strain CVI988 (Rispens) and two additional consensus genomes of the very virulent strain Md5 by sequencing viral stocks and cultured field isolates. In conjunction with the published genomes of CVI988 and Md5, this allowed us to perform 3-way comparisons between multiple consensus genomes of the same strain. We found that consensus genomes of CVI988 can vary in as many as 236 positions involving 13 open reading frames (ORFs). In contrast, we found that Md5 genomes varied only in 11 positions involving a single ORF. Notably, we were able to identify 3 SNPs in the Unique Long region and 16 SNPs in the Unique Short (US) region of CVI988GenBank.BAC that were not present in either CVI988Pirbright.lab or CVI988USDA.PA.field. Recombination analyses of field strains previously described as natural recombinants of CVI988 yielded no evidence of crossover events in the US region when either CVI988Pirbright.lab or CVI988USDA.PA.field were used to represent CVI988 instead of CVI988GenBank.BAC. We were also able to confirm that both CVI988 and Md5 populations were mixed, exhibiting a total of 29 and 27 high-confidence minor variant positions, respectively. However, we did not find any evidence of minor variants in the positions corresponding to the 19 SNPs in the unique regions of CVI988GenBank.BAC. Taken together, our findings suggest that continued reliance on the same published consensus genome of CVI988 may have led to an overestimation of genomic divergence between CVI988 and virulent strains, and that multiple consensus genomes per strain may be necessary to ensure the accuracy of interstrain genomic comparisons.","PeriodicalId":56026,"journal":{"name":"Virus Evolution","volume":"12 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Analysis of Multiple Consensus Genomes of the Same Strain of Marek’s Disease Virus Reveals Intrastrain Variation\",\"authors\":\"Alejandro Ortigas-Vasquez, Utsav Pandey, Daniel Renner, Chris D Bowen, Susan J Baigent, John Dunn, Hans Cheng, Yongxiu Yao, Andrew F Read, Venugopal Nair, Dave A Kennedy, Moriah L Szpara\",\"doi\":\"10.1093/ve/veae047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current strategies to understand the molecular basis of Marek’s disease virus (MDV) virulence primarily consist of cataloguing divergent nucleotides between strains with different phenotypes. However, most comparative genomic studies of MDV rely on previously published consensus genomes despite the confirmed existence of MDV strains as mixed viral populations. To assess the reliability of interstrain genomic comparisons relying on published consensus genomes of MDV, we obtained two additional consensus genomes of vaccine strain CVI988 (Rispens) and two additional consensus genomes of the very virulent strain Md5 by sequencing viral stocks and cultured field isolates. In conjunction with the published genomes of CVI988 and Md5, this allowed us to perform 3-way comparisons between multiple consensus genomes of the same strain. We found that consensus genomes of CVI988 can vary in as many as 236 positions involving 13 open reading frames (ORFs). In contrast, we found that Md5 genomes varied only in 11 positions involving a single ORF. Notably, we were able to identify 3 SNPs in the Unique Long region and 16 SNPs in the Unique Short (US) region of CVI988GenBank.BAC that were not present in either CVI988Pirbright.lab or CVI988USDA.PA.field. Recombination analyses of field strains previously described as natural recombinants of CVI988 yielded no evidence of crossover events in the US region when either CVI988Pirbright.lab or CVI988USDA.PA.field were used to represent CVI988 instead of CVI988GenBank.BAC. We were also able to confirm that both CVI988 and Md5 populations were mixed, exhibiting a total of 29 and 27 high-confidence minor variant positions, respectively. However, we did not find any evidence of minor variants in the positions corresponding to the 19 SNPs in the unique regions of CVI988GenBank.BAC. Taken together, our findings suggest that continued reliance on the same published consensus genome of CVI988 may have led to an overestimation of genomic divergence between CVI988 and virulent strains, and that multiple consensus genomes per strain may be necessary to ensure the accuracy of interstrain genomic comparisons.\",\"PeriodicalId\":56026,\"journal\":{\"name\":\"Virus Evolution\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Virus Evolution\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/ve/veae047\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virus Evolution","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/ve/veae047","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目前了解马雷克氏病病毒(MDV)毒力分子基础的策略主要包括对不同表型毒株之间的差异核苷酸进行编目。然而,尽管已证实马立克氏病病毒(MDV)毒株作为混合病毒种群存在,但大多数 MDV 比较基因组研究都依赖于以前发表的共识基因组。为了评估依靠已发表的 MDV 共识基因组进行株间基因组比较的可靠性,我们通过对病毒种群和培养的野外分离株进行测序,获得了疫苗株 CVI988(Rispens)的两个额外共识基因组和毒性极强的毒株 Md5 的两个额外共识基因组。结合已公布的 CVI988 和 Md5 基因组,我们可以对同一毒株的多个共识基因组进行 3 向比较。我们发现,CVI988 的共识基因组在多达 236 个位置上存在差异,涉及 13 个开放阅读框(ORF)。相比之下,我们发现 Md5 基因组仅在涉及单个 ORF 的 11 个位置上存在差异。值得注意的是,我们在 CVI988GenBank.BAC 的 Unique Long 区域和 Unique Short (US) 区域分别发现了 3 个和 16 个 SNPs,而这些 SNPs 在 CVI988Pirbright.lab 和 CVI988USDA.PA.field 中都不存在。在用 CVI988Pirbright.lab 或 CVI988USDA.PA.field 代替 CVI988GenBank.BAC 代表 CVI988 时,对先前描述为 CVI988 天然重组子的田间菌株进行重组分析,没有发现 US 区域有交叉事件的证据。我们还证实,CVI988 和 Md5 群体都是混合的,分别表现出总共 29 个和 27 个高置信度小变异位点。但是,我们在 CVI988GenBank.BAC 独特区域的 19 个 SNPs 所对应的位置上没有发现任何小变异的证据。综上所述,我们的研究结果表明,继续依赖同一已发表的 CVI988 共识基因组可能会导致高估 CVI988 和毒株之间的基因组差异,而且每个毒株可能需要多个共识基因组才能确保毒株间基因组比较的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative Analysis of Multiple Consensus Genomes of the Same Strain of Marek’s Disease Virus Reveals Intrastrain Variation
Current strategies to understand the molecular basis of Marek’s disease virus (MDV) virulence primarily consist of cataloguing divergent nucleotides between strains with different phenotypes. However, most comparative genomic studies of MDV rely on previously published consensus genomes despite the confirmed existence of MDV strains as mixed viral populations. To assess the reliability of interstrain genomic comparisons relying on published consensus genomes of MDV, we obtained two additional consensus genomes of vaccine strain CVI988 (Rispens) and two additional consensus genomes of the very virulent strain Md5 by sequencing viral stocks and cultured field isolates. In conjunction with the published genomes of CVI988 and Md5, this allowed us to perform 3-way comparisons between multiple consensus genomes of the same strain. We found that consensus genomes of CVI988 can vary in as many as 236 positions involving 13 open reading frames (ORFs). In contrast, we found that Md5 genomes varied only in 11 positions involving a single ORF. Notably, we were able to identify 3 SNPs in the Unique Long region and 16 SNPs in the Unique Short (US) region of CVI988GenBank.BAC that were not present in either CVI988Pirbright.lab or CVI988USDA.PA.field. Recombination analyses of field strains previously described as natural recombinants of CVI988 yielded no evidence of crossover events in the US region when either CVI988Pirbright.lab or CVI988USDA.PA.field were used to represent CVI988 instead of CVI988GenBank.BAC. We were also able to confirm that both CVI988 and Md5 populations were mixed, exhibiting a total of 29 and 27 high-confidence minor variant positions, respectively. However, we did not find any evidence of minor variants in the positions corresponding to the 19 SNPs in the unique regions of CVI988GenBank.BAC. Taken together, our findings suggest that continued reliance on the same published consensus genome of CVI988 may have led to an overestimation of genomic divergence between CVI988 and virulent strains, and that multiple consensus genomes per strain may be necessary to ensure the accuracy of interstrain genomic comparisons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Virus Evolution
Virus Evolution Immunology and Microbiology-Microbiology
CiteScore
10.50
自引率
5.70%
发文量
108
审稿时长
14 weeks
期刊介绍: Virus Evolution is a new Open Access journal focusing on the long-term evolution of viruses, viruses as a model system for studying evolutionary processes, viral molecular epidemiology and environmental virology. The aim of the journal is to provide a forum for original research papers, reviews, commentaries and a venue for in-depth discussion on the topics relevant to virus evolution.
期刊最新文献
Dimensionality reduction distills complex evolutionary relationships in seasonal influenza and SARS-CoV-2. Enhanced detection and molecular modeling of adaptive mutations in SARS-CoV-2 coding and non-coding regions using the c/µ test. Community-level variability in Bronx COVID-19 hospitalizations associated with differing population immunity during the second year of the pandemic. A phylogenetics and variant calling pipeline to support SARS-CoV-2 genomic epidemiology in the UK. Genomic epidemiology reveals the variation and transmission properties of SARS-CoV-2 in a single-source community outbreak.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1