聚类对复杂网络图灵不稳定性的影响

Samana Pranesh, Devanand Jaiswal, Sayan Gupta
{"title":"聚类对复杂网络图灵不稳定性的影响","authors":"Samana Pranesh, Devanand Jaiswal, Sayan Gupta","doi":"arxiv-2406.17440","DOIUrl":null,"url":null,"abstract":"Turing instability in complex networks have been shown in the literature to\nbe dominated by the distribution of the nodal degrees. The conditions for\nTuring instability have been derived with an explicit dependence on the\neigenvalues of the Laplacian, which in turn depends on the network topology.\nThis study reveals that apart from average degree of the network, another\nglobal network measure - the nodal clustering - also plays a crucial role.\nAnalytical and numerical results are presented to show the importance of\nclustering for several network topologies ranging from the $\\mathbb{S}^1$ /\n$\\mathbb{H}^2$ hyperbolic geometric networks that enable modelling the\nnaturally occurring clustering in real world networks, as well as the random\nand scale free networks, which are obtained as limiting cases of the\n$\\mathbb{S}^1$ / $\\mathbb{H}^2$ model. Analysis of eigenvector localization\nproperties in these networks are shown to reveal distinct signatures that\nenable identifying the so called Turing patterns even in complex networks.","PeriodicalId":501370,"journal":{"name":"arXiv - PHYS - Pattern Formation and Solitons","volume":"56 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of clustering on Turing instability in complex networks\",\"authors\":\"Samana Pranesh, Devanand Jaiswal, Sayan Gupta\",\"doi\":\"arxiv-2406.17440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Turing instability in complex networks have been shown in the literature to\\nbe dominated by the distribution of the nodal degrees. The conditions for\\nTuring instability have been derived with an explicit dependence on the\\neigenvalues of the Laplacian, which in turn depends on the network topology.\\nThis study reveals that apart from average degree of the network, another\\nglobal network measure - the nodal clustering - also plays a crucial role.\\nAnalytical and numerical results are presented to show the importance of\\nclustering for several network topologies ranging from the $\\\\mathbb{S}^1$ /\\n$\\\\mathbb{H}^2$ hyperbolic geometric networks that enable modelling the\\nnaturally occurring clustering in real world networks, as well as the random\\nand scale free networks, which are obtained as limiting cases of the\\n$\\\\mathbb{S}^1$ / $\\\\mathbb{H}^2$ model. Analysis of eigenvector localization\\nproperties in these networks are shown to reveal distinct signatures that\\nenable identifying the so called Turing patterns even in complex networks.\",\"PeriodicalId\":501370,\"journal\":{\"name\":\"arXiv - PHYS - Pattern Formation and Solitons\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Pattern Formation and Solitons\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.17440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Pattern Formation and Solitons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.17440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

文献表明,复杂网络中的图灵不稳定性主要受节点度分布的影响。本研究揭示了除了网络的平均度之外,另一个全局网络度量--节点聚类--也起着至关重要的作用。分析和数值结果表明了聚类对几种网络拓扑结构的重要性,这些拓扑结构包括$\mathbb{S}^1$ /$\mathbb{H}^2$双曲几何网络(可以模拟现实世界网络中自然出现的聚类),以及随机和无标度网络(作为$\mathbb{S}^1$ / $\mathbb{H}^2$ 模型的极限情况)。对这些网络中特征向量定位特性的分析表明,即使在复杂的网络中,也能识别出所谓的图灵模式的独特特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of clustering on Turing instability in complex networks
Turing instability in complex networks have been shown in the literature to be dominated by the distribution of the nodal degrees. The conditions for Turing instability have been derived with an explicit dependence on the eigenvalues of the Laplacian, which in turn depends on the network topology. This study reveals that apart from average degree of the network, another global network measure - the nodal clustering - also plays a crucial role. Analytical and numerical results are presented to show the importance of clustering for several network topologies ranging from the $\mathbb{S}^1$ / $\mathbb{H}^2$ hyperbolic geometric networks that enable modelling the naturally occurring clustering in real world networks, as well as the random and scale free networks, which are obtained as limiting cases of the $\mathbb{S}^1$ / $\mathbb{H}^2$ model. Analysis of eigenvector localization properties in these networks are shown to reveal distinct signatures that enable identifying the so called Turing patterns even in complex networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Geometrically constrained sine-Gordon field: BPS solitons and their collisions (In)stability of symbiotic vortex-bright soliton in holographic immiscible binary superfluids Chimera state in neural network with the PID coupling Pattern formation of bulk-surface reaction-diffusion systems in a ball Designing reaction-cross-diffusion systems with Turing and wave instabilities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1