利用本体论和 COSMIC 测量方法为自动回归测试选择测试用例并确定优先次序

IF 2 2区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Automated Software Engineering Pub Date : 2024-06-10 DOI:10.1007/s10515-024-00447-8
Zaineb Sakhrawi, Taher Labidi
{"title":"利用本体论和 COSMIC 测量方法为自动回归测试选择测试用例并确定优先次序","authors":"Zaineb Sakhrawi,&nbsp;Taher Labidi","doi":"10.1007/s10515-024-00447-8","DOIUrl":null,"url":null,"abstract":"<div><p>Regression testing is an important activity that aims to provide information about the quality of the software product under test when changes occur. The two primary techniques for optimizing regression testing are test case selection and prioritization. To identify features affected by a change and determine the best test cases for selection and prioritization, techniques allowing the semantic representation and the quantification of testing concepts are required. The goal of this paper is threefold. Firstly, we proposed an ontology-based test case selection model that enables automated regression testing by dynamically selecting appropriate test cases. The selection of test cases is based on a semantic mapping between change requests and their associated test suites and test cases. Secondly, the selected test cases are prioritized based on their functional size. The functional size is determined using the COmmon Software Measurement International Consortium (COSMIC) Functional Size Measurement (FSM) method. The test case prioritization attempts to reorganize test case execution in accordance with its goal. One common goal is fault detection, in which test cases with a higher functional size (i.e., with a higher chance of detecting a fault) are run first, followed by the remaining test cases. Thirdly, we built an automated testing tool using the output of the aforementioned processes to validate the robustness of our proposed research methodology. Results from a case study in the automotive industry domain show that semantically presenting change requests and using standardized FSM methods to quantify their related test cases are the most interesting metrics. Obviously, they assist in the automation of regression testing and, therefore, in all the software testing processes.</p></div>","PeriodicalId":55414,"journal":{"name":"Automated Software Engineering","volume":"31 2","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Test case selection and prioritization approach for automated regression testing using ontology and COSMIC measurement\",\"authors\":\"Zaineb Sakhrawi,&nbsp;Taher Labidi\",\"doi\":\"10.1007/s10515-024-00447-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Regression testing is an important activity that aims to provide information about the quality of the software product under test when changes occur. The two primary techniques for optimizing regression testing are test case selection and prioritization. To identify features affected by a change and determine the best test cases for selection and prioritization, techniques allowing the semantic representation and the quantification of testing concepts are required. The goal of this paper is threefold. Firstly, we proposed an ontology-based test case selection model that enables automated regression testing by dynamically selecting appropriate test cases. The selection of test cases is based on a semantic mapping between change requests and their associated test suites and test cases. Secondly, the selected test cases are prioritized based on their functional size. The functional size is determined using the COmmon Software Measurement International Consortium (COSMIC) Functional Size Measurement (FSM) method. The test case prioritization attempts to reorganize test case execution in accordance with its goal. One common goal is fault detection, in which test cases with a higher functional size (i.e., with a higher chance of detecting a fault) are run first, followed by the remaining test cases. Thirdly, we built an automated testing tool using the output of the aforementioned processes to validate the robustness of our proposed research methodology. Results from a case study in the automotive industry domain show that semantically presenting change requests and using standardized FSM methods to quantify their related test cases are the most interesting metrics. Obviously, they assist in the automation of regression testing and, therefore, in all the software testing processes.</p></div>\",\"PeriodicalId\":55414,\"journal\":{\"name\":\"Automated Software Engineering\",\"volume\":\"31 2\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automated Software Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10515-024-00447-8\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automated Software Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10515-024-00447-8","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

回归测试是一项重要活动,目的是在发生变化时提供有关被测软件产品质量的信息。优化回归测试的两种主要技术是测试用例选择和优先级排序。要识别受变更影响的特征,并确定最佳测试用例的选择和优先级,就需要有能够对测试概念进行语义表述和量化的技术。本文的目标有三个方面。首先,我们提出了一种基于本体的测试用例选择模型,通过动态选择适当的测试用例来实现自动回归测试。测试用例的选择基于变更请求及其相关测试套件和测试用例之间的语义映射。其次,所选测试用例的优先级取决于其功能大小。功能大小是使用国际通用软件测量联盟(COSMIC)的功能大小测量(FSM)方法确定的。测试用例优先级排序试图根据其目标重新组织测试用例的执行。其中一个常见的目标是故障检测,在这种情况下,首先运行功能大小较高(即检测到故障的几率较高)的测试用例,然后再运行其余的测试用例。第三,我们利用上述流程的输出建立了一个自动测试工具,以验证我们提出的研究方法的稳健性。汽车行业领域案例研究的结果表明,从语义上呈现变更请求和使用标准化 FSM 方法量化相关测试用例是最有趣的衡量标准。显然,它们有助于回归测试的自动化,因此也有助于所有软件测试流程的自动化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Test case selection and prioritization approach for automated regression testing using ontology and COSMIC measurement

Regression testing is an important activity that aims to provide information about the quality of the software product under test when changes occur. The two primary techniques for optimizing regression testing are test case selection and prioritization. To identify features affected by a change and determine the best test cases for selection and prioritization, techniques allowing the semantic representation and the quantification of testing concepts are required. The goal of this paper is threefold. Firstly, we proposed an ontology-based test case selection model that enables automated regression testing by dynamically selecting appropriate test cases. The selection of test cases is based on a semantic mapping between change requests and their associated test suites and test cases. Secondly, the selected test cases are prioritized based on their functional size. The functional size is determined using the COmmon Software Measurement International Consortium (COSMIC) Functional Size Measurement (FSM) method. The test case prioritization attempts to reorganize test case execution in accordance with its goal. One common goal is fault detection, in which test cases with a higher functional size (i.e., with a higher chance of detecting a fault) are run first, followed by the remaining test cases. Thirdly, we built an automated testing tool using the output of the aforementioned processes to validate the robustness of our proposed research methodology. Results from a case study in the automotive industry domain show that semantically presenting change requests and using standardized FSM methods to quantify their related test cases are the most interesting metrics. Obviously, they assist in the automation of regression testing and, therefore, in all the software testing processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Automated Software Engineering
Automated Software Engineering 工程技术-计算机:软件工程
CiteScore
4.80
自引率
11.80%
发文量
51
审稿时长
>12 weeks
期刊介绍: This journal details research, tutorial papers, survey and accounts of significant industrial experience in the foundations, techniques, tools and applications of automated software engineering technology. This includes the study of techniques for constructing, understanding, adapting, and modeling software artifacts and processes. Coverage in Automated Software Engineering examines both automatic systems and collaborative systems as well as computational models of human software engineering activities. In addition, it presents knowledge representations and artificial intelligence techniques applicable to automated software engineering, and formal techniques that support or provide theoretical foundations. The journal also includes reviews of books, software, conferences and workshops.
期刊最新文献
MP: motion program synthesis with machine learning interpretability and knowledge graph analogy LLM-enhanced evolutionary test generation for untyped languages Context-aware code summarization with multi-relational graph neural network Enhancing multi-objective test case selection through the mutation operator BadCodePrompt: backdoor attacks against prompt engineering of large language models for code generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1