利用计算流体力学评估三维可打印混凝土的几何质量

IF 2.9 3区 工程技术 Q2 ENGINEERING, CIVIL Frontiers of Structural and Civil Engineering Pub Date : 2024-07-03 DOI:10.1007/s11709-024-1080-4
Weijiu Cui, Haijun Sun, Jiangang Zhou, Sheng Wang, Xinyu Shi, Yaxin Tao
{"title":"利用计算流体力学评估三维可打印混凝土的几何质量","authors":"Weijiu Cui, Haijun Sun, Jiangang Zhou, Sheng Wang, Xinyu Shi, Yaxin Tao","doi":"10.1007/s11709-024-1080-4","DOIUrl":null,"url":null,"abstract":"<p>The importance of geometrical control of three dimensional (3D) printable concrete without the support of formwork is widely acknowledged. In this study, a numerical model based on computational fluid dynamics was developed to evaluate the geometrical quality of a 3D printed layer. The numerical results were compared, using image analysis, with physical cross-sectional sawn samples. The influence of printing parameters (printing speed, nozzle height, and nozzle diameter) and the rheological behavior of printed materials (yield stress), on the geometrical quality of one printed layer was investigated. In addition, the yield zone of the printed layer was analyzed, giving insights on the critical factors for geometrical control in 3D concrete printing. Results indicated that the developed model can precisely describe the extrusion process, as well as the cross-sectional quality.</p>","PeriodicalId":12476,"journal":{"name":"Frontiers of Structural and Civil Engineering","volume":"34 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometric quality evaluation of three-dimensional printable concrete using computational fluid dynamics\",\"authors\":\"Weijiu Cui, Haijun Sun, Jiangang Zhou, Sheng Wang, Xinyu Shi, Yaxin Tao\",\"doi\":\"10.1007/s11709-024-1080-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The importance of geometrical control of three dimensional (3D) printable concrete without the support of formwork is widely acknowledged. In this study, a numerical model based on computational fluid dynamics was developed to evaluate the geometrical quality of a 3D printed layer. The numerical results were compared, using image analysis, with physical cross-sectional sawn samples. The influence of printing parameters (printing speed, nozzle height, and nozzle diameter) and the rheological behavior of printed materials (yield stress), on the geometrical quality of one printed layer was investigated. In addition, the yield zone of the printed layer was analyzed, giving insights on the critical factors for geometrical control in 3D concrete printing. Results indicated that the developed model can precisely describe the extrusion process, as well as the cross-sectional quality.</p>\",\"PeriodicalId\":12476,\"journal\":{\"name\":\"Frontiers of Structural and Civil Engineering\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Structural and Civil Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11709-024-1080-4\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Structural and Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11709-024-1080-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

在没有模板支持的情况下,对可打印三维(3D)混凝土进行几何控制的重要性已得到广泛认可。在这项研究中,开发了一个基于计算流体动力学的数值模型,用于评估三维打印层的几何质量。通过图像分析,将数值结果与物理截面锯切样品进行了比较。研究了打印参数(打印速度、喷嘴高度和喷嘴直径)和打印材料流变行为(屈服应力)对打印层几何质量的影响。此外,还分析了打印层的屈服区,从而深入了解了三维混凝土打印中几何控制的关键因素。结果表明,所开发的模型可以精确描述挤压过程以及截面质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Geometric quality evaluation of three-dimensional printable concrete using computational fluid dynamics

The importance of geometrical control of three dimensional (3D) printable concrete without the support of formwork is widely acknowledged. In this study, a numerical model based on computational fluid dynamics was developed to evaluate the geometrical quality of a 3D printed layer. The numerical results were compared, using image analysis, with physical cross-sectional sawn samples. The influence of printing parameters (printing speed, nozzle height, and nozzle diameter) and the rheological behavior of printed materials (yield stress), on the geometrical quality of one printed layer was investigated. In addition, the yield zone of the printed layer was analyzed, giving insights on the critical factors for geometrical control in 3D concrete printing. Results indicated that the developed model can precisely describe the extrusion process, as well as the cross-sectional quality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.20
自引率
3.30%
发文量
734
期刊介绍: Frontiers of Structural and Civil Engineering is an international journal that publishes original research papers, review articles and case studies related to civil and structural engineering. Topics include but are not limited to the latest developments in building and bridge structures, geotechnical engineering, hydraulic engineering, coastal engineering, and transport engineering. Case studies that demonstrate the successful applications of cutting-edge research technologies are welcome. The journal also promotes and publishes interdisciplinary research and applications connecting civil engineering and other disciplines, such as bio-, info-, nano- and social sciences and technology. Manuscripts submitted for publication will be subject to a stringent peer review.
期刊最新文献
An artificial neural network based deep collocation method for the solution of transient linear and nonlinear partial differential equations Bibliographic survey and comprehensive review on mechanical and durability properties of microorganism based self-healing concrete Seismic response of pile-supported structures considering the coupling of inertial and kinematic interactions in different soil sites An isogeometric approach for nonlocal bending and free oscillation of magneto-electro-elastic functionally graded nanobeam with elastic constraints Shaking table test on a tunnel-group metro station in rock site under harmonic excitation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1