{"title":"利用时间深度学习和双重注意力预测结构的测量反应","authors":"Viet-Hung Dang, Trong-Phu Nguyen, Thi-Lien Pham, Huan X. Nguyen","doi":"10.1007/s11709-024-1092-0","DOIUrl":null,"url":null,"abstract":"<p>The objective of this study is to develop a novel and efficient model for forecasting the nonlinear behavior of structures in response to time-varying random excitation. The key idea is to design a deep learning architecture to leverage the relationships, between external excitations and structure’s vibration signals, and between historical values and future values, within multiple time-series data. The proposed method consists of two main steps: the first step applies a global attention mechanism to combine multiple-measured time series and time-varying excitation into a weighted time series before feeding it to a temporal architecture; the second step utilizes a self-attention mechanism followed by a fully connected layer to predict multi-step future values. The viability of the proposed method is demonstrated via two case studies involving synthetic data from a three-dimensional (3D) reinforced concrete structure and experimental data from an 18-story steel frame. Furthermore, comparison and robustness studies are carried out, showing that the proposed method outperforms conventional methods and maintains high performance in the presence of noise with an amplitude of less than 10%.</p>","PeriodicalId":12476,"journal":{"name":"Frontiers of Structural and Civil Engineering","volume":"12 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forecasting measured responses of structures using temporal deep learning and dual attention\",\"authors\":\"Viet-Hung Dang, Trong-Phu Nguyen, Thi-Lien Pham, Huan X. Nguyen\",\"doi\":\"10.1007/s11709-024-1092-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The objective of this study is to develop a novel and efficient model for forecasting the nonlinear behavior of structures in response to time-varying random excitation. The key idea is to design a deep learning architecture to leverage the relationships, between external excitations and structure’s vibration signals, and between historical values and future values, within multiple time-series data. The proposed method consists of two main steps: the first step applies a global attention mechanism to combine multiple-measured time series and time-varying excitation into a weighted time series before feeding it to a temporal architecture; the second step utilizes a self-attention mechanism followed by a fully connected layer to predict multi-step future values. The viability of the proposed method is demonstrated via two case studies involving synthetic data from a three-dimensional (3D) reinforced concrete structure and experimental data from an 18-story steel frame. Furthermore, comparison and robustness studies are carried out, showing that the proposed method outperforms conventional methods and maintains high performance in the presence of noise with an amplitude of less than 10%.</p>\",\"PeriodicalId\":12476,\"journal\":{\"name\":\"Frontiers of Structural and Civil Engineering\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Structural and Civil Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11709-024-1092-0\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Structural and Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11709-024-1092-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Forecasting measured responses of structures using temporal deep learning and dual attention
The objective of this study is to develop a novel and efficient model for forecasting the nonlinear behavior of structures in response to time-varying random excitation. The key idea is to design a deep learning architecture to leverage the relationships, between external excitations and structure’s vibration signals, and between historical values and future values, within multiple time-series data. The proposed method consists of two main steps: the first step applies a global attention mechanism to combine multiple-measured time series and time-varying excitation into a weighted time series before feeding it to a temporal architecture; the second step utilizes a self-attention mechanism followed by a fully connected layer to predict multi-step future values. The viability of the proposed method is demonstrated via two case studies involving synthetic data from a three-dimensional (3D) reinforced concrete structure and experimental data from an 18-story steel frame. Furthermore, comparison and robustness studies are carried out, showing that the proposed method outperforms conventional methods and maintains high performance in the presence of noise with an amplitude of less than 10%.
期刊介绍:
Frontiers of Structural and Civil Engineering is an international journal that publishes original research papers, review articles and case studies related to civil and structural engineering. Topics include but are not limited to the latest developments in building and bridge structures, geotechnical engineering, hydraulic engineering, coastal engineering, and transport engineering. Case studies that demonstrate the successful applications of cutting-edge research technologies are welcome. The journal also promotes and publishes interdisciplinary research and applications connecting civil engineering and other disciplines, such as bio-, info-, nano- and social sciences and technology. Manuscripts submitted for publication will be subject to a stringent peer review.