承受风荷载的柔性自由形态板的结构性能

IF 2.9 3区 工程技术 Q2 ENGINEERING, CIVIL Frontiers of Structural and Civil Engineering Pub Date : 2024-06-21 DOI:10.1007/s11709-024-1070-6
Yong Yoo, Zaryab Shahid, Renzhe Chen, Maria Koliou, Anastasia Muliana, Negar Kalantar
{"title":"承受风荷载的柔性自由形态板的结构性能","authors":"Yong Yoo, Zaryab Shahid, Renzhe Chen, Maria Koliou, Anastasia Muliana, Negar Kalantar","doi":"10.1007/s11709-024-1070-6","DOIUrl":null,"url":null,"abstract":"<p>An increased number of hurricanes and tornadoes have been recorded worldwide in the last decade, while research efforts to reduce wind-related damage to structures become essential. Freeform architecture, which focuses on generating complex curved shapes including streamlined shapes, has recently gained interest. This study focuses on investigating the potential of kerf panels, which have unique flexibility depending on the cut patterns and densities, to generate complex shapes for façades and their performance under wind loads. To investigate the kerf panel’s potential capacity against wind loads, static and dynamic analyses were conducted for two kerf panel types with different cut densities and pre-deformed shapes. It was observed that although solid panels result in smaller displacement amplitudes, stresses, and strains in some cases, the kerf panels allow for global and local cell deformations resulting in stress reduction in various locations with the potential to reduce damage due to overstress in structures. For the pre-deformed kerf panels, it was observed that both the overall stress and strain responses in kerf cut arrangements were lower than those of the flat-shaped panels. This study shows the promise of the use of kerf panels in achieving both design flexibility and performance demands when exposed to service loadings. Considering that this newly proposed architectural configuration (design paradigm) for facades could revolutionize structural engineering by pushing complex freeform shapes to a standard practice that intertwines aesthetic arguments, building performance requirements, and material design considerations has the potential for significant practical applications.</p>","PeriodicalId":12476,"journal":{"name":"Frontiers of Structural and Civil Engineering","volume":"27 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural performance of flexible freeform panels subjected to wind loads\",\"authors\":\"Yong Yoo, Zaryab Shahid, Renzhe Chen, Maria Koliou, Anastasia Muliana, Negar Kalantar\",\"doi\":\"10.1007/s11709-024-1070-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An increased number of hurricanes and tornadoes have been recorded worldwide in the last decade, while research efforts to reduce wind-related damage to structures become essential. Freeform architecture, which focuses on generating complex curved shapes including streamlined shapes, has recently gained interest. This study focuses on investigating the potential of kerf panels, which have unique flexibility depending on the cut patterns and densities, to generate complex shapes for façades and their performance under wind loads. To investigate the kerf panel’s potential capacity against wind loads, static and dynamic analyses were conducted for two kerf panel types with different cut densities and pre-deformed shapes. It was observed that although solid panels result in smaller displacement amplitudes, stresses, and strains in some cases, the kerf panels allow for global and local cell deformations resulting in stress reduction in various locations with the potential to reduce damage due to overstress in structures. For the pre-deformed kerf panels, it was observed that both the overall stress and strain responses in kerf cut arrangements were lower than those of the flat-shaped panels. This study shows the promise of the use of kerf panels in achieving both design flexibility and performance demands when exposed to service loadings. Considering that this newly proposed architectural configuration (design paradigm) for facades could revolutionize structural engineering by pushing complex freeform shapes to a standard practice that intertwines aesthetic arguments, building performance requirements, and material design considerations has the potential for significant practical applications.</p>\",\"PeriodicalId\":12476,\"journal\":{\"name\":\"Frontiers of Structural and Civil Engineering\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Structural and Civil Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11709-024-1070-6\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Structural and Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11709-024-1070-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

近十年来,全球范围内的飓风和龙卷风次数不断增加,因此,研究如何减少风对建筑物造成的破坏变得至关重要。自由形态建筑专注于生成复杂的曲线形状,包括流线型形状,最近引起了人们的兴趣。切口板具有独特的灵活性,取决于切割模式和密度,本研究的重点是调查切口板生成复杂外墙形状的潜力及其在风荷载下的性能。为了研究切口板承受风荷载的潜在能力,我们对两种具有不同切割密度和预变形形状的切口板进行了静态和动态分析。结果表明,虽然实心面板在某些情况下会产生较小的位移振幅、应力和应变,但切口面板允许整体和局部单元变形,从而减少了不同位置的应力,有可能减少结构中由于应力过大而造成的损坏。据观察,对于预变形切口面板,切口切割布置的整体应力和应变响应均低于平形面板。这项研究表明,在承受使用荷载时,使用切口板有望同时满足设计灵活性和性能要求。考虑到这种新提出的外墙建筑结构(设计范例)可能会彻底改变结构工程学,将复杂的自由形状推向标准实践,将美学论点、建筑性能要求和材料设计考虑因素交织在一起,具有重要的实际应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structural performance of flexible freeform panels subjected to wind loads

An increased number of hurricanes and tornadoes have been recorded worldwide in the last decade, while research efforts to reduce wind-related damage to structures become essential. Freeform architecture, which focuses on generating complex curved shapes including streamlined shapes, has recently gained interest. This study focuses on investigating the potential of kerf panels, which have unique flexibility depending on the cut patterns and densities, to generate complex shapes for façades and their performance under wind loads. To investigate the kerf panel’s potential capacity against wind loads, static and dynamic analyses were conducted for two kerf panel types with different cut densities and pre-deformed shapes. It was observed that although solid panels result in smaller displacement amplitudes, stresses, and strains in some cases, the kerf panels allow for global and local cell deformations resulting in stress reduction in various locations with the potential to reduce damage due to overstress in structures. For the pre-deformed kerf panels, it was observed that both the overall stress and strain responses in kerf cut arrangements were lower than those of the flat-shaped panels. This study shows the promise of the use of kerf panels in achieving both design flexibility and performance demands when exposed to service loadings. Considering that this newly proposed architectural configuration (design paradigm) for facades could revolutionize structural engineering by pushing complex freeform shapes to a standard practice that intertwines aesthetic arguments, building performance requirements, and material design considerations has the potential for significant practical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.20
自引率
3.30%
发文量
734
期刊介绍: Frontiers of Structural and Civil Engineering is an international journal that publishes original research papers, review articles and case studies related to civil and structural engineering. Topics include but are not limited to the latest developments in building and bridge structures, geotechnical engineering, hydraulic engineering, coastal engineering, and transport engineering. Case studies that demonstrate the successful applications of cutting-edge research technologies are welcome. The journal also promotes and publishes interdisciplinary research and applications connecting civil engineering and other disciplines, such as bio-, info-, nano- and social sciences and technology. Manuscripts submitted for publication will be subject to a stringent peer review.
期刊最新文献
An artificial neural network based deep collocation method for the solution of transient linear and nonlinear partial differential equations Bibliographic survey and comprehensive review on mechanical and durability properties of microorganism based self-healing concrete Seismic response of pile-supported structures considering the coupling of inertial and kinematic interactions in different soil sites An isogeometric approach for nonlocal bending and free oscillation of magneto-electro-elastic functionally graded nanobeam with elastic constraints Shaking table test on a tunnel-group metro station in rock site under harmonic excitation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1