{"title":"双资源受限灵活作业车间调度与取决于序列的设置时间","authors":"Sasan Barak, Shima Javanmard, Reza Moghdani","doi":"10.1111/exsy.13669","DOIUrl":null,"url":null,"abstract":"<p>This study addresses the imperative need for efficient solutions in the context of the dual resource constrained flexible job shop scheduling problem with sequence-dependent setup times (DRCFJS-SDSTs). We introduce a pioneering tri-objective mixed-integer linear mathematical model tailored to this complex challenge. Our model is designed to optimize the assignment of operations to candidate multi-skilled machines and operators, with the primary goals of minimizing operators' idleness cost and sequence-dependent setup time-related expenses. Additionally, it aims to mitigate total tardiness and earliness penalties while regulating maximum machine workload. Given the NP-hard nature of the proposed DRCFJS-SDST, we employ the epsilon constraint method to derive exact optimal solutions for small-scale problems. For larger instances, we develop a modified variant of the multi-objective invasive weed optimization (MOIWO) algorithm, enhanced by a fuzzy sorting algorithm for competitive exclusion. In the absence of established benchmarks in the literature, we validate our solutions against those generated by multi-objective particle swarm optimization (MOPSO) and non-dominated sorted genetic algorithm (NSGA-II). Through comparative analysis, we demonstrate the superior performance of MOIWO. Specifically, when compared with NSGA-II, MOIWO achieves success rates of 90.83% and shows similar performance in 4.17% of cases. Moreover, compared with MOPSO, MOIWO achieves success rates of 84.17% and exhibits similar performance in 9.17% of cases. These findings contribute significantly to the advancement of scheduling optimization methodologies.</p>","PeriodicalId":51053,"journal":{"name":"Expert Systems","volume":"41 10","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/exsy.13669","citationCount":"0","resultStr":"{\"title\":\"Dual resource constrained flexible job shop scheduling with sequence-dependent setup time\",\"authors\":\"Sasan Barak, Shima Javanmard, Reza Moghdani\",\"doi\":\"10.1111/exsy.13669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study addresses the imperative need for efficient solutions in the context of the dual resource constrained flexible job shop scheduling problem with sequence-dependent setup times (DRCFJS-SDSTs). We introduce a pioneering tri-objective mixed-integer linear mathematical model tailored to this complex challenge. Our model is designed to optimize the assignment of operations to candidate multi-skilled machines and operators, with the primary goals of minimizing operators' idleness cost and sequence-dependent setup time-related expenses. Additionally, it aims to mitigate total tardiness and earliness penalties while regulating maximum machine workload. Given the NP-hard nature of the proposed DRCFJS-SDST, we employ the epsilon constraint method to derive exact optimal solutions for small-scale problems. For larger instances, we develop a modified variant of the multi-objective invasive weed optimization (MOIWO) algorithm, enhanced by a fuzzy sorting algorithm for competitive exclusion. In the absence of established benchmarks in the literature, we validate our solutions against those generated by multi-objective particle swarm optimization (MOPSO) and non-dominated sorted genetic algorithm (NSGA-II). Through comparative analysis, we demonstrate the superior performance of MOIWO. Specifically, when compared with NSGA-II, MOIWO achieves success rates of 90.83% and shows similar performance in 4.17% of cases. Moreover, compared with MOPSO, MOIWO achieves success rates of 84.17% and exhibits similar performance in 9.17% of cases. These findings contribute significantly to the advancement of scheduling optimization methodologies.</p>\",\"PeriodicalId\":51053,\"journal\":{\"name\":\"Expert Systems\",\"volume\":\"41 10\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/exsy.13669\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/exsy.13669\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/exsy.13669","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Dual resource constrained flexible job shop scheduling with sequence-dependent setup time
This study addresses the imperative need for efficient solutions in the context of the dual resource constrained flexible job shop scheduling problem with sequence-dependent setup times (DRCFJS-SDSTs). We introduce a pioneering tri-objective mixed-integer linear mathematical model tailored to this complex challenge. Our model is designed to optimize the assignment of operations to candidate multi-skilled machines and operators, with the primary goals of minimizing operators' idleness cost and sequence-dependent setup time-related expenses. Additionally, it aims to mitigate total tardiness and earliness penalties while regulating maximum machine workload. Given the NP-hard nature of the proposed DRCFJS-SDST, we employ the epsilon constraint method to derive exact optimal solutions for small-scale problems. For larger instances, we develop a modified variant of the multi-objective invasive weed optimization (MOIWO) algorithm, enhanced by a fuzzy sorting algorithm for competitive exclusion. In the absence of established benchmarks in the literature, we validate our solutions against those generated by multi-objective particle swarm optimization (MOPSO) and non-dominated sorted genetic algorithm (NSGA-II). Through comparative analysis, we demonstrate the superior performance of MOIWO. Specifically, when compared with NSGA-II, MOIWO achieves success rates of 90.83% and shows similar performance in 4.17% of cases. Moreover, compared with MOPSO, MOIWO achieves success rates of 84.17% and exhibits similar performance in 9.17% of cases. These findings contribute significantly to the advancement of scheduling optimization methodologies.
期刊介绍:
Expert Systems: The Journal of Knowledge Engineering publishes papers dealing with all aspects of knowledge engineering, including individual methods and techniques in knowledge acquisition and representation, and their application in the construction of systems – including expert systems – based thereon. Detailed scientific evaluation is an essential part of any paper.
As well as traditional application areas, such as Software and Requirements Engineering, Human-Computer Interaction, and Artificial Intelligence, we are aiming at the new and growing markets for these technologies, such as Business, Economy, Market Research, and Medical and Health Care. The shift towards this new focus will be marked by a series of special issues covering hot and emergent topics.