褐鳟鱼的洄游群揭示了峡湾-河流连续体所面临的各种人为威胁

Marine Ecology Pub Date : 2024-06-24 DOI:10.1111/maec.12820
Robert J. Lennox, Erlend M. Hanssen, Eirik Straume Normann, Bjørn T. Barlaup, Cecilie I. Nilsen, Lotte S. Dahlmo, Saron Berhe, Knut Wiik Vollset
{"title":"褐鳟鱼的洄游群揭示了峡湾-河流连续体所面临的各种人为威胁","authors":"Robert J. Lennox, Erlend M. Hanssen, Eirik Straume Normann, Bjørn T. Barlaup, Cecilie I. Nilsen, Lotte S. Dahlmo, Saron Berhe, Knut Wiik Vollset","doi":"10.1111/maec.12820","DOIUrl":null,"url":null,"abstract":"Brown trout is a partially migratory salmonid that makes use of diverse habitats to maximise growth and fitness. One of the most substantial threats to brown trout is infection with pathogens from open net‐pen fish farming, which creates hotspots for pathogen reproduction and transmission. Western Norway is a global hotspot for both fish farming and wild salmonids, which generates conflicts due to the impacts of the farms on the behaviour, survival, and fitness of salmonids that overlap with farming activities. In this study, we tagged adult brown trout (>35 cm) at two spatiotemporal intervals that corresponded to two different life history stages: springtime in the river when trout were completing overwintering and summer in the fjord when trout were in their marine feeding phase. The tagging revealed three different behaviours, fish that remained in freshwater, fish that migrated between freshwater and the fjord, and fish that remained in the estuary. Although some trout moved >100 km to the outer fjord areas, most trout remained relatively close to the river. Depth sensor transmitters in a subset of trout also revealed that the trout remained in the upper water column. Most of the horizontal and vertical movements therefore resulted in spatial overlap with fish farming for the migratory trout, but not for resident trout that remained in the estuary or in freshwater. Findings reveal the challenges of managing a fish with such behavioural plasticity but the urgency of recognising how important inner fjord habitats are for migratory brown trout.","PeriodicalId":18330,"journal":{"name":"Marine Ecology","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Migratory contingents of brown trout reveal variable exposure to anthropogenic threats along a fjord‐river continuum\",\"authors\":\"Robert J. Lennox, Erlend M. Hanssen, Eirik Straume Normann, Bjørn T. Barlaup, Cecilie I. Nilsen, Lotte S. Dahlmo, Saron Berhe, Knut Wiik Vollset\",\"doi\":\"10.1111/maec.12820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brown trout is a partially migratory salmonid that makes use of diverse habitats to maximise growth and fitness. One of the most substantial threats to brown trout is infection with pathogens from open net‐pen fish farming, which creates hotspots for pathogen reproduction and transmission. Western Norway is a global hotspot for both fish farming and wild salmonids, which generates conflicts due to the impacts of the farms on the behaviour, survival, and fitness of salmonids that overlap with farming activities. In this study, we tagged adult brown trout (>35 cm) at two spatiotemporal intervals that corresponded to two different life history stages: springtime in the river when trout were completing overwintering and summer in the fjord when trout were in their marine feeding phase. The tagging revealed three different behaviours, fish that remained in freshwater, fish that migrated between freshwater and the fjord, and fish that remained in the estuary. Although some trout moved >100 km to the outer fjord areas, most trout remained relatively close to the river. Depth sensor transmitters in a subset of trout also revealed that the trout remained in the upper water column. Most of the horizontal and vertical movements therefore resulted in spatial overlap with fish farming for the migratory trout, but not for resident trout that remained in the estuary or in freshwater. Findings reveal the challenges of managing a fish with such behavioural plasticity but the urgency of recognising how important inner fjord habitats are for migratory brown trout.\",\"PeriodicalId\":18330,\"journal\":{\"name\":\"Marine Ecology\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Ecology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/maec.12820\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Ecology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/maec.12820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

褐鳟鱼是一种部分洄游的鲑科鱼类,它利用不同的栖息地来最大限度地提高生长速度和适应能力。褐鳟面临的最大威胁之一是感染来自开放式网箱养鱼的病原体,这为病原体的繁殖和传播创造了热点。挪威西部是全球鱼类养殖和野生鲑鱼的热点地区,由于养殖场对与养殖活动重叠的鲑鱼的行为、生存和适应能力造成影响,因此产生了冲突。在这项研究中,我们在两个时空间隔对成年褐鳟(35 厘米)进行了标记,这两个时空间隔与两个不同的生活史阶段相对应:春季在河流中,褐鳟完成越冬;夏季在峡湾中,褐鳟处于海洋觅食阶段。标签显示了三种不同的行为:留在淡水中的鱼,在淡水和峡湾之间洄游的鱼,以及留在河口的鱼。虽然有些鳟鱼向峡湾外围地区迁移了100公里,但大多数鳟鱼仍留在河流附近。一部分鳟鱼体内的深度传感器发射器也显示,鳟鱼仍留在上层水体中。因此,对于洄游鳟鱼来说,大多数水平和垂直移动都会导致与养鱼业的空间重叠,但对于留在河口或淡水中的常住鳟鱼来说,则不会。研究结果揭示了管理具有这种行为可塑性的鱼类所面临的挑战,以及认识到内峡湾栖息地对洄游褐鳟的重要性的紧迫性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Migratory contingents of brown trout reveal variable exposure to anthropogenic threats along a fjord‐river continuum
Brown trout is a partially migratory salmonid that makes use of diverse habitats to maximise growth and fitness. One of the most substantial threats to brown trout is infection with pathogens from open net‐pen fish farming, which creates hotspots for pathogen reproduction and transmission. Western Norway is a global hotspot for both fish farming and wild salmonids, which generates conflicts due to the impacts of the farms on the behaviour, survival, and fitness of salmonids that overlap with farming activities. In this study, we tagged adult brown trout (>35 cm) at two spatiotemporal intervals that corresponded to two different life history stages: springtime in the river when trout were completing overwintering and summer in the fjord when trout were in their marine feeding phase. The tagging revealed three different behaviours, fish that remained in freshwater, fish that migrated between freshwater and the fjord, and fish that remained in the estuary. Although some trout moved >100 km to the outer fjord areas, most trout remained relatively close to the river. Depth sensor transmitters in a subset of trout also revealed that the trout remained in the upper water column. Most of the horizontal and vertical movements therefore resulted in spatial overlap with fish farming for the migratory trout, but not for resident trout that remained in the estuary or in freshwater. Findings reveal the challenges of managing a fish with such behavioural plasticity but the urgency of recognising how important inner fjord habitats are for migratory brown trout.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Filter feeders living on suspension feeders: New insights into the lifestyle and distribution of Arcturidae Dana, 1849 (Crustacea: Isopoda) around Iceland Mass Mortality of the Invasive Sea Urchin Diadema setosum in Türkiye, Eastern Mediterranean Possibly Reveals Vibrio Bacteria Infection Genetic Differentiation Between Sympatric Crustacean Decapods Inhabiting the Mediterranean Sea: Implications to Avoid Larval and Adult Misidentification Meiofaunal Dynamics in Oceanic Islands: Insights From Spatial Distribution, Substrate Influence and Connectivity The Fatty Acid Profile of the Deep‐Sea Gastropod Parvaplustrum wareni Indicates a Dominant Role of Chemosynthesis in the Nutrition of the Hydrothermal Vent Ecosystem (Piip Volcano)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1