{"title":"变压器能否改变财务预测?","authors":"Hugo Gobato Souto, Amir Moradi","doi":"10.1108/cfri-01-2024-0032","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>This study aims to critically evaluate the competitiveness of Transformer-based models in financial forecasting, specifically in the context of stock realized volatility forecasting. It seeks to challenge and extend upon the assertions of Zeng <em>et al.</em> (2023) regarding the purported limitations of these models in handling temporal information in financial time series.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>Employing a robust methodological framework, the study systematically compares a range of Transformer models, including first-generation and advanced iterations like Informer, Autoformer, and PatchTST, against benchmark models (HAR, NBEATSx, NHITS, and TimesNet). The evaluation encompasses 80 different stocks, four error metrics, four statistical tests, and three robustness tests designed to reflect diverse market conditions and data availability scenarios.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The research uncovers that while first-generation Transformer models, like TFT, underperform in financial forecasting, second-generation models like Informer, Autoformer, and PatchTST demonstrate remarkable efficacy, especially in scenarios characterized by limited historical data and market volatility. The study also highlights the nuanced performance of these models across different forecasting horizons and error metrics, showcasing their potential as robust tools in financial forecasting, which contradicts the findings of Zeng <em>et al.</em> (2023)</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>This paper contributes to the financial forecasting literature by providing a comprehensive analysis of the applicability of Transformer-based models in this domain. It offers new insights into the capabilities of these models, especially their adaptability to different market conditions and forecasting requirements, challenging the existing skepticism created by Zeng <em>et al.</em> (2023) about their utility in financial forecasting.</p><!--/ Abstract__block -->","PeriodicalId":44440,"journal":{"name":"China Finance Review International","volume":"177 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Can transformers transform financial forecasting?\",\"authors\":\"Hugo Gobato Souto, Amir Moradi\",\"doi\":\"10.1108/cfri-01-2024-0032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>This study aims to critically evaluate the competitiveness of Transformer-based models in financial forecasting, specifically in the context of stock realized volatility forecasting. It seeks to challenge and extend upon the assertions of Zeng <em>et al.</em> (2023) regarding the purported limitations of these models in handling temporal information in financial time series.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>Employing a robust methodological framework, the study systematically compares a range of Transformer models, including first-generation and advanced iterations like Informer, Autoformer, and PatchTST, against benchmark models (HAR, NBEATSx, NHITS, and TimesNet). The evaluation encompasses 80 different stocks, four error metrics, four statistical tests, and three robustness tests designed to reflect diverse market conditions and data availability scenarios.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>The research uncovers that while first-generation Transformer models, like TFT, underperform in financial forecasting, second-generation models like Informer, Autoformer, and PatchTST demonstrate remarkable efficacy, especially in scenarios characterized by limited historical data and market volatility. The study also highlights the nuanced performance of these models across different forecasting horizons and error metrics, showcasing their potential as robust tools in financial forecasting, which contradicts the findings of Zeng <em>et al.</em> (2023)</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>This paper contributes to the financial forecasting literature by providing a comprehensive analysis of the applicability of Transformer-based models in this domain. It offers new insights into the capabilities of these models, especially their adaptability to different market conditions and forecasting requirements, challenging the existing skepticism created by Zeng <em>et al.</em> (2023) about their utility in financial forecasting.</p><!--/ Abstract__block -->\",\"PeriodicalId\":44440,\"journal\":{\"name\":\"China Finance Review International\",\"volume\":\"177 1\",\"pages\":\"\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"China Finance Review International\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1108/cfri-01-2024-0032\",\"RegionNum\":1,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Finance Review International","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1108/cfri-01-2024-0032","RegionNum":1,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
This study aims to critically evaluate the competitiveness of Transformer-based models in financial forecasting, specifically in the context of stock realized volatility forecasting. It seeks to challenge and extend upon the assertions of Zeng et al. (2023) regarding the purported limitations of these models in handling temporal information in financial time series.
Design/methodology/approach
Employing a robust methodological framework, the study systematically compares a range of Transformer models, including first-generation and advanced iterations like Informer, Autoformer, and PatchTST, against benchmark models (HAR, NBEATSx, NHITS, and TimesNet). The evaluation encompasses 80 different stocks, four error metrics, four statistical tests, and three robustness tests designed to reflect diverse market conditions and data availability scenarios.
Findings
The research uncovers that while first-generation Transformer models, like TFT, underperform in financial forecasting, second-generation models like Informer, Autoformer, and PatchTST demonstrate remarkable efficacy, especially in scenarios characterized by limited historical data and market volatility. The study also highlights the nuanced performance of these models across different forecasting horizons and error metrics, showcasing their potential as robust tools in financial forecasting, which contradicts the findings of Zeng et al. (2023)
Originality/value
This paper contributes to the financial forecasting literature by providing a comprehensive analysis of the applicability of Transformer-based models in this domain. It offers new insights into the capabilities of these models, especially their adaptability to different market conditions and forecasting requirements, challenging the existing skepticism created by Zeng et al. (2023) about their utility in financial forecasting.
期刊介绍:
China Finance Review International publishes original and high-quality theoretical and empirical articles focusing on financial and economic issues arising from China's reform, opening-up, economic development, and system transformation. The journal serves as a platform for exchange between Chinese finance scholars and international financial economists, covering a wide range of topics including monetary policy, banking, international trade and finance, corporate finance, asset pricing, market microstructure, corporate governance, incentive studies, fiscal policy, public management, and state-owned enterprise reform.