GANs 和合成金融数据:计算 VaR*

IF 1.8 3区 经济学 Q2 ECONOMICS Applied Economics Pub Date : 2024-06-18 DOI:10.1080/00036846.2024.2365456
David E. Allen, Leonard Mushunje, Shelton Peiris
{"title":"GANs 和合成金融数据:计算 VaR*","authors":"David E. Allen, Leonard Mushunje, Shelton Peiris","doi":"10.1080/00036846.2024.2365456","DOIUrl":null,"url":null,"abstract":"Generative Adversarial Neural nets (GANs) are a new branch of machine learning techniques. A GAN learns to generate new data from the training data set. We examine the characteristics of the fake f...","PeriodicalId":7963,"journal":{"name":"Applied Economics","volume":"1 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GANs and synthetic financial data: calculating VaR*\",\"authors\":\"David E. Allen, Leonard Mushunje, Shelton Peiris\",\"doi\":\"10.1080/00036846.2024.2365456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generative Adversarial Neural nets (GANs) are a new branch of machine learning techniques. A GAN learns to generate new data from the training data set. We examine the characteristics of the fake f...\",\"PeriodicalId\":7963,\"journal\":{\"name\":\"Applied Economics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Economics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/00036846.2024.2365456\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Economics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/00036846.2024.2365456","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

生成对抗神经网络(GAN)是机器学习技术的一个新分支。GAN 学会从训练数据集生成新数据。我们研究了伪造数据的特征,并对其进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GANs and synthetic financial data: calculating VaR*
Generative Adversarial Neural nets (GANs) are a new branch of machine learning techniques. A GAN learns to generate new data from the training data set. We examine the characteristics of the fake f...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Economics
Applied Economics ECONOMICS-
CiteScore
3.80
自引率
4.50%
发文量
525
期刊介绍: Applied Economics is a peer-reviewed journal encouraging the application of economic analysis to specific problems in both the public and private sectors. It particularly fosters quantitative studies, the results of which are of use in the practical field, and thus helps to bring economic theory nearer to reality. Contributions which make use of the methods of mathematics, statistics and operations research will be welcomed, provided the conclusions are factual and properly explained.
期刊最新文献
Mandating a dividend distribution policy disclosure over fixed dividend policy: a shareholder value perspective The heterogeneous impact of uncertainty shocks on labour market outcomes for men and women Energy price and returns: a threshold heteroscedasticity model approach Beyond selfishness: the interaction of income and human values in shaping Europeans’ ideology Carbon credit sentiments and green energy stocks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1