利用数据漂移自适应技术在线检测垃圾评论并进行信息图表说明

IF 3.3 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Informatica Pub Date : 2024-06-17 DOI:10.15388/24-infor562
Francisco de Arriba-Pérez, Silvia García-Méndez, Fátima Leal, Benedita Malheiro, Juan C. Burguillo
{"title":"利用数据漂移自适应技术在线检测垃圾评论并进行信息图表说明","authors":"Francisco de Arriba-Pérez, Silvia García-Méndez, Fátima Leal, Benedita Malheiro, Juan C. Burguillo","doi":"10.15388/24-infor562","DOIUrl":null,"url":null,"abstract":"Spam reviews are a pervasive problem on online platforms due to its significant impact on reputation. However, research into spam detection in data streams is scarce. Another concern lies in their need for transparency. Consequently, this paper addresses those problems by proposing an online solution for identifying and explaining spam reviews, incorporating data drift adaptation. It integrates (<i>i</i>) incremental profiling, (<i>ii</i>) data drift detection &amp; adaptation, and (<i>iii</i>) identification of spam reviews employing Machine Learning. The explainable mechanism displays a visual and textual prediction explanation in a dashboard. The best results obtained reached up to 87% spam <i>F</i>-measure.\nPDF&nbsp;&nbsp;XML","PeriodicalId":56292,"journal":{"name":"Informatica","volume":"23 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online Detection and Infographic Explanation of Spam Reviews with Data Drift Adaptation\",\"authors\":\"Francisco de Arriba-Pérez, Silvia García-Méndez, Fátima Leal, Benedita Malheiro, Juan C. Burguillo\",\"doi\":\"10.15388/24-infor562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spam reviews are a pervasive problem on online platforms due to its significant impact on reputation. However, research into spam detection in data streams is scarce. Another concern lies in their need for transparency. Consequently, this paper addresses those problems by proposing an online solution for identifying and explaining spam reviews, incorporating data drift adaptation. It integrates (<i>i</i>) incremental profiling, (<i>ii</i>) data drift detection &amp; adaptation, and (<i>iii</i>) identification of spam reviews employing Machine Learning. The explainable mechanism displays a visual and textual prediction explanation in a dashboard. The best results obtained reached up to 87% spam <i>F</i>-measure.\\nPDF&nbsp;&nbsp;XML\",\"PeriodicalId\":56292,\"journal\":{\"name\":\"Informatica\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informatica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.15388/24-infor562\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatica","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.15388/24-infor562","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

垃圾评论是网络平台上一个普遍存在的问题,因为它会对声誉产生重大影响。然而,有关数据流中垃圾评论检测的研究却很少。另一个令人担忧的问题是垃圾评论需要透明。因此,本文针对这些问题提出了一种在线解决方案,用于识别和解释垃圾评论,并结合数据漂移适应。它整合了(i)增量剖析,(ii)数据漂移检测& 适应,以及(iii)利用机器学习识别垃圾评论。可解释机制在仪表板中显示可视化和文本预测解释。获得的最佳结果是,垃圾邮件 F-measure 高达 87%。PDF  XML
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Online Detection and Infographic Explanation of Spam Reviews with Data Drift Adaptation
Spam reviews are a pervasive problem on online platforms due to its significant impact on reputation. However, research into spam detection in data streams is scarce. Another concern lies in their need for transparency. Consequently, this paper addresses those problems by proposing an online solution for identifying and explaining spam reviews, incorporating data drift adaptation. It integrates (i) incremental profiling, (ii) data drift detection & adaptation, and (iii) identification of spam reviews employing Machine Learning. The explainable mechanism displays a visual and textual prediction explanation in a dashboard. The best results obtained reached up to 87% spam F-measure. PDF  XML
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Informatica
Informatica 工程技术-计算机:信息系统
CiteScore
5.90
自引率
6.90%
发文量
19
审稿时长
12 months
期刊介绍: The quarterly journal Informatica provides an international forum for high-quality original research and publishes papers on mathematical simulation and optimization, recognition and control, programming theory and systems, automation systems and elements. Informatica provides a multidisciplinary forum for scientists and engineers involved in research and design including experts who implement and manage information systems applications.
期刊最新文献
Beyond Quasi-Adjoint Graphs: On Polynomial-Time Solvable Cases of the Hamiltonian Cycle and Path Problems Confidential Transaction Balance Verification by the Net Using Non-Interactive Zero-Knowledge Proofs An Improved Algorithm for Extracting Frequent Gradual Patterns Offloaded Data Processing Energy Efficiency Evaluation Demystifying the Stability and the Performance Aspects of CoCoSo Ranking Method under Uncertain Preferences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1