Andreas Frommer, Michele Rinelli, Marcel Schweitzer
{"title":"估算稀疏对称矩阵函数迹的随机探测方法分析","authors":"Andreas Frommer, Michele Rinelli, Marcel Schweitzer","doi":"10.1090/mcom/3984","DOIUrl":null,"url":null,"abstract":"<p>We consider the problem of estimating the trace of a matrix function <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f left-parenthesis upper A right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>A</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">f(A)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In certain situations, in particular if <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f left-parenthesis upper A right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>A</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">f(A)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> cannot be well approximated by a low-rank matrix, combining probing methods based on graph colorings with stochastic trace estimation techniques can yield accurate approximations at moderate cost. So far, such methods have not been thoroughly analyzed, though, but were rather used as efficient heuristics by practitioners. In this manuscript, we perform a detailed analysis of stochastic probing methods and, in particular, expose conditions under which the expected approximation error in the stochastic probing method scales more favorably with the dimension of the matrix than the error in non-stochastic probing. Extending results from Aune, Simpson, and Eidsvik [Stat. Comput. 24 (2014), pp. 247–263], we also characterize situations in which using just one stochastic vector is always—not only in expectation—better than the deterministic probing method. Several numerical experiments illustrate our theory and compare with existing methods.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of stochastic probing methods for estimating the trace of functions of sparse symmetric matrices\",\"authors\":\"Andreas Frommer, Michele Rinelli, Marcel Schweitzer\",\"doi\":\"10.1090/mcom/3984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the problem of estimating the trace of a matrix function <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"f left-parenthesis upper A right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>A</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">f(A)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In certain situations, in particular if <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"f left-parenthesis upper A right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>A</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">f(A)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> cannot be well approximated by a low-rank matrix, combining probing methods based on graph colorings with stochastic trace estimation techniques can yield accurate approximations at moderate cost. So far, such methods have not been thoroughly analyzed, though, but were rather used as efficient heuristics by practitioners. In this manuscript, we perform a detailed analysis of stochastic probing methods and, in particular, expose conditions under which the expected approximation error in the stochastic probing method scales more favorably with the dimension of the matrix than the error in non-stochastic probing. Extending results from Aune, Simpson, and Eidsvik [Stat. Comput. 24 (2014), pp. 247–263], we also characterize situations in which using just one stochastic vector is always—not only in expectation—better than the deterministic probing method. Several numerical experiments illustrate our theory and compare with existing methods.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3984\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/mcom/3984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
我们考虑的问题是估计矩阵函数 f ( A ) f(A) 的迹。在某些情况下,特别是当 f ( A ) f(A) 不能很好地被低秩矩阵逼近时,将基于图着色的探测方法与随机迹估计技术相结合,可以以适度的成本获得精确的逼近结果。不过,迄今为止,这种方法还没有被彻底分析过,而是被实践者用作高效的启发式方法。在本手稿中,我们对随机探测方法进行了详细分析,特别是揭示了随机探测方法的预期近似误差与矩阵维数的关系比非随机探测误差更有利的条件。通过扩展 Aune、Simpson 和 Eidsvik [Stat. Comput. 24 (2014),第 247-263 页] 的结果,我们还描述了仅使用一个随机向量始终优于确定性探测方法的情况,而不仅仅是期望值。几个数值实验说明了我们的理论,并与现有方法进行了比较。
Analysis of stochastic probing methods for estimating the trace of functions of sparse symmetric matrices
We consider the problem of estimating the trace of a matrix function f(A)f(A). In certain situations, in particular if f(A)f(A) cannot be well approximated by a low-rank matrix, combining probing methods based on graph colorings with stochastic trace estimation techniques can yield accurate approximations at moderate cost. So far, such methods have not been thoroughly analyzed, though, but were rather used as efficient heuristics by practitioners. In this manuscript, we perform a detailed analysis of stochastic probing methods and, in particular, expose conditions under which the expected approximation error in the stochastic probing method scales more favorably with the dimension of the matrix than the error in non-stochastic probing. Extending results from Aune, Simpson, and Eidsvik [Stat. Comput. 24 (2014), pp. 247–263], we also characterize situations in which using just one stochastic vector is always—not only in expectation—better than the deterministic probing method. Several numerical experiments illustrate our theory and compare with existing methods.