{"title":"利用双层神经网络数值求解高维度泊松偏微分方程","authors":"Mathias Dus, Virginie Ehrlacher","doi":"10.1090/mcom/3971","DOIUrl":null,"url":null,"abstract":"<p>The aim of this article is to analyze numerical schemes using two-layer neural networks with infinite width for the resolution of the high-dimensional Poisson partial differential equation with Neumann boundary condition. Using Barron’s representation of the solution [IEEE Trans. Inform. Theory 39 (1993), pp. 930–945] with a probability measure defined on the set of parameter values, the energy is minimized thanks to a gradient curve dynamic on the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2\"> <mml:semantics> <mml:mn>2</mml:mn> <mml:annotation encoding=\"application/x-tex\">2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Wasserstein space of the set of parameter values defining the neural network. Inspired by the work from Bach and Chizat [On the global convergence of gradient descent for over-parameterized models using optimal transport, 2018; ICM–International Congress of Mathematicians, EMS Press, Berlin, 2023], we prove that if the gradient curve converges, then the represented function is the solution of the elliptic equation considered. Numerical experiments are given to show the potential of the method.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical solution of Poisson partial differential equation in high dimension using two-layer neural networks\",\"authors\":\"Mathias Dus, Virginie Ehrlacher\",\"doi\":\"10.1090/mcom/3971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The aim of this article is to analyze numerical schemes using two-layer neural networks with infinite width for the resolution of the high-dimensional Poisson partial differential equation with Neumann boundary condition. Using Barron’s representation of the solution [IEEE Trans. Inform. Theory 39 (1993), pp. 930–945] with a probability measure defined on the set of parameter values, the energy is minimized thanks to a gradient curve dynamic on the <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"2\\\"> <mml:semantics> <mml:mn>2</mml:mn> <mml:annotation encoding=\\\"application/x-tex\\\">2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Wasserstein space of the set of parameter values defining the neural network. Inspired by the work from Bach and Chizat [On the global convergence of gradient descent for over-parameterized models using optimal transport, 2018; ICM–International Congress of Mathematicians, EMS Press, Berlin, 2023], we prove that if the gradient curve converges, then the represented function is the solution of the elliptic equation considered. Numerical experiments are given to show the potential of the method.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3971\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/mcom/3971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
本文旨在分析使用无限宽双层神经网络的数值方案,以解决具有诺伊曼边界条件的高维泊松偏微分方程。利用巴伦的求解表示法[IEEE Trans. Inform. Theory 39 (1993), pp.受 Bach 和 Chizat [On the global convergence of gradient descent for over-parameterized models using optimal transport, 2018; ICM-International Congress of Mathematicians, EMS Press, Berlin, 2023] 工作的启发,我们证明,如果梯度曲线收敛,那么所表示的函数就是所考虑的椭圆方程的解。我们给出了数值实验,以展示该方法的潜力。
Numerical solution of Poisson partial differential equation in high dimension using two-layer neural networks
The aim of this article is to analyze numerical schemes using two-layer neural networks with infinite width for the resolution of the high-dimensional Poisson partial differential equation with Neumann boundary condition. Using Barron’s representation of the solution [IEEE Trans. Inform. Theory 39 (1993), pp. 930–945] with a probability measure defined on the set of parameter values, the energy is minimized thanks to a gradient curve dynamic on the 22-Wasserstein space of the set of parameter values defining the neural network. Inspired by the work from Bach and Chizat [On the global convergence of gradient descent for over-parameterized models using optimal transport, 2018; ICM–International Congress of Mathematicians, EMS Press, Berlin, 2023], we prove that if the gradient curve converges, then the represented function is the solution of the elliptic equation considered. Numerical experiments are given to show the potential of the method.