Yalda Khodadadi Jokar, Mohammad Goli, Mojtaba Nasr Esfahani, Mohammad Fazel, Afsaneh Najarian
{"title":"使用阿拉伯胶和波斯胶混合物通过喷雾干燥技术微胶囊化富含 EPA 和 DHA 的鱼油","authors":"Yalda Khodadadi Jokar, Mohammad Goli, Mojtaba Nasr Esfahani, Mohammad Fazel, Afsaneh Najarian","doi":"10.1002/ejlt.202300239","DOIUrl":null,"url":null,"abstract":"<p>The microencapsulation of fish oil by the spray-drying technique was conducted using Arabic gum (AG) and Persian gum (PG) as wall materials. AG-to-PG ratios, including 29:1, 28:2, 27:3, 26:4, and 25:5 (%w/w), wall-to-oil ratios, including 5:1, 4:1, 3:1, 2;1, and 1:1, drying temperature (180, 190, 200, 210, and 220°C), and feed flow rate at high and low states were optimized using response surface methodology. Microencapsulation efficiency (MEE), moisture content (MC), peroxide value (PV), and particle size (PS) were determined. Results showed that the highest MEE and the lowest MC, PV, and PS were attained when 26:4, 4:1, 210°C, and high speed were considered, respectively. At this point, the MEE, MC, PV, and PS were 79.49%, 3.39%, 10.98 meq O<sub>2</sub>/kg oil, and 39.05 µm, respectively. The microstructure of optimum microencapsulated powder exhibited no observable cracks, fissures, or pores while having a typical spherical and smooth surface. Microencapsulation of fish oil using a mixture of AG and PG showed higher oxidative stability associated with high MEE, low MC, and low PV at the final product. Moreover, the optimized emulsion formulation and drying conditions increased the storage stability.</p>","PeriodicalId":11988,"journal":{"name":"European Journal of Lipid Science and Technology","volume":"126 8","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microencapsulation of fish oil rich in EPA and DHA using mixture of Arabic gum and Persian gum through spray-drying technique\",\"authors\":\"Yalda Khodadadi Jokar, Mohammad Goli, Mojtaba Nasr Esfahani, Mohammad Fazel, Afsaneh Najarian\",\"doi\":\"10.1002/ejlt.202300239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The microencapsulation of fish oil by the spray-drying technique was conducted using Arabic gum (AG) and Persian gum (PG) as wall materials. AG-to-PG ratios, including 29:1, 28:2, 27:3, 26:4, and 25:5 (%w/w), wall-to-oil ratios, including 5:1, 4:1, 3:1, 2;1, and 1:1, drying temperature (180, 190, 200, 210, and 220°C), and feed flow rate at high and low states were optimized using response surface methodology. Microencapsulation efficiency (MEE), moisture content (MC), peroxide value (PV), and particle size (PS) were determined. Results showed that the highest MEE and the lowest MC, PV, and PS were attained when 26:4, 4:1, 210°C, and high speed were considered, respectively. At this point, the MEE, MC, PV, and PS were 79.49%, 3.39%, 10.98 meq O<sub>2</sub>/kg oil, and 39.05 µm, respectively. The microstructure of optimum microencapsulated powder exhibited no observable cracks, fissures, or pores while having a typical spherical and smooth surface. Microencapsulation of fish oil using a mixture of AG and PG showed higher oxidative stability associated with high MEE, low MC, and low PV at the final product. Moreover, the optimized emulsion formulation and drying conditions increased the storage stability.</p>\",\"PeriodicalId\":11988,\"journal\":{\"name\":\"European Journal of Lipid Science and Technology\",\"volume\":\"126 8\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Lipid Science and Technology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ejlt.202300239\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Lipid Science and Technology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ejlt.202300239","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Microencapsulation of fish oil rich in EPA and DHA using mixture of Arabic gum and Persian gum through spray-drying technique
The microencapsulation of fish oil by the spray-drying technique was conducted using Arabic gum (AG) and Persian gum (PG) as wall materials. AG-to-PG ratios, including 29:1, 28:2, 27:3, 26:4, and 25:5 (%w/w), wall-to-oil ratios, including 5:1, 4:1, 3:1, 2;1, and 1:1, drying temperature (180, 190, 200, 210, and 220°C), and feed flow rate at high and low states were optimized using response surface methodology. Microencapsulation efficiency (MEE), moisture content (MC), peroxide value (PV), and particle size (PS) were determined. Results showed that the highest MEE and the lowest MC, PV, and PS were attained when 26:4, 4:1, 210°C, and high speed were considered, respectively. At this point, the MEE, MC, PV, and PS were 79.49%, 3.39%, 10.98 meq O2/kg oil, and 39.05 µm, respectively. The microstructure of optimum microencapsulated powder exhibited no observable cracks, fissures, or pores while having a typical spherical and smooth surface. Microencapsulation of fish oil using a mixture of AG and PG showed higher oxidative stability associated with high MEE, low MC, and low PV at the final product. Moreover, the optimized emulsion formulation and drying conditions increased the storage stability.
期刊介绍:
The European Journal of Lipid Science and Technology is a peer-reviewed journal publishing original research articles, reviews, and other contributions on lipid related topics in food science and technology, biomedical science including clinical and pre-clinical research, nutrition, animal science, plant and microbial lipids, (bio)chemistry, oleochemistry, biotechnology, processing, physical chemistry, and analytics including lipidomics. A major focus of the journal is the synthesis of health related topics with applied aspects.
Following is a selection of subject areas which are of special interest to EJLST:
Animal and plant products for healthier foods including strategic feeding and transgenic crops
Authentication and analysis of foods for ensuring food quality and safety
Bioavailability of PUFA and other nutrients
Dietary lipids and minor compounds, their specific roles in food products and in nutrition
Food technology and processing for safer and healthier products
Functional foods and nutraceuticals
Lipidomics
Lipid structuring and formulations
Oleochemistry, lipid-derived polymers and biomaterials
Processes using lipid-modifying enzymes
The scope is not restricted to these areas. Submissions on topics at the interface of basic research and applications are strongly encouraged. The journal is the official organ the European Federation for the Science and Technology of Lipids (Euro Fed Lipid).