探索可生物降解和不可生物降解微塑料颗粒对玉米吸收铅的影响

IF 2.8 3区 农林科学 Q3 ENVIRONMENTAL SCIENCES Journal of Soils and Sediments Pub Date : 2024-06-19 DOI:10.1007/s11368-024-03813-x
Dan QIU, Chunmiao LU, Huarong SUN, Chaohang LI, Guangqiang LONG, Ping ZHAO, Yijun LONG, Yue DING, Cuixia SU, Zhengyan PAN, Yuefang CAO, Shuran HE
{"title":"探索可生物降解和不可生物降解微塑料颗粒对玉米吸收铅的影响","authors":"Dan QIU, Chunmiao LU, Huarong SUN, Chaohang LI, Guangqiang LONG, Ping ZHAO, Yijun LONG, Yue DING, Cuixia SU, Zhengyan PAN, Yuefang CAO, Shuran HE","doi":"10.1007/s11368-024-03813-x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose</h3><p>The aim of this study was to explore the effects of the variations in biodegradable and nonbiodegradable microplastic particles (MPs) on the absorption of lead (Pb) in maize.</p><h3 data-test=\"abstract-sub-heading\">Materials and methods</h3><p>Pot experiments were conducted using maize and two types of MPs, nonbiodegradable polyethylene (PE) and biodegradable polybutylene adipate/terephthalate (PBAT), at four different MP concentrations (0, 0.1, 1, and 10%). After one month of growth, the Pb content in aboveground and belowground parts of the maize seedlings, CaCl<sub>2</sub>-extracted Pb content, the proportion of different speciation of Pb within the soil, and soil properties were determined. We determined Pb uptake by maize seedlings, soil physicochemical properties, and Pb speciation in soil.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>The addition of PE and PBAT particles led to the decrease in Pb content in maize root with the increase in concentration. The addition of 0.1% PBAT particles significantly increased the Pb content in the shoot of maize plants by 37.60% and Pb content in the root by 65.06% compared with 0.1% PE. The addition of PE and PBAT particles increased the proportion of residual Pb to 36.0% and 38.0%, respectively. The correlation analysis showed that the addition of MPs mainly affected the absorption of Pb by maize plants by affecting soil pH, dissolved organic carbon (DOC), cation exchange capacity (CEC), free crystalline Mn (MnDCB), and amorphous Fe (FeTamm).</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>This study demonstrates that biodegradable and nonbiodegradable MPs in soil inhibited Pb accumulation in maize seedling roots. FeDCB, MnDCB, and FeTamm may be the main control factors affecting the inhibition of lead uptake by PE in maize seedling roots. Additionally, FeTamm may be the main controlling factor influencing PBAT to reduce lead accumulation in maize seedling roots. The results of the present study could provide novel insights into the toxicity and bioavailability effects of MPs and Pb on maize, as well as a valuable reference for ongoing research on the ecological risk assessment of MPs and other pollutants in the soil environment.</p>","PeriodicalId":17139,"journal":{"name":"Journal of Soils and Sediments","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the Impact of Biodegradable and Nonbiodegradable Microplastic Particles on Pb Absorption in Maize\",\"authors\":\"Dan QIU, Chunmiao LU, Huarong SUN, Chaohang LI, Guangqiang LONG, Ping ZHAO, Yijun LONG, Yue DING, Cuixia SU, Zhengyan PAN, Yuefang CAO, Shuran HE\",\"doi\":\"10.1007/s11368-024-03813-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Purpose</h3><p>The aim of this study was to explore the effects of the variations in biodegradable and nonbiodegradable microplastic particles (MPs) on the absorption of lead (Pb) in maize.</p><h3 data-test=\\\"abstract-sub-heading\\\">Materials and methods</h3><p>Pot experiments were conducted using maize and two types of MPs, nonbiodegradable polyethylene (PE) and biodegradable polybutylene adipate/terephthalate (PBAT), at four different MP concentrations (0, 0.1, 1, and 10%). After one month of growth, the Pb content in aboveground and belowground parts of the maize seedlings, CaCl<sub>2</sub>-extracted Pb content, the proportion of different speciation of Pb within the soil, and soil properties were determined. We determined Pb uptake by maize seedlings, soil physicochemical properties, and Pb speciation in soil.</p><h3 data-test=\\\"abstract-sub-heading\\\">Results</h3><p>The addition of PE and PBAT particles led to the decrease in Pb content in maize root with the increase in concentration. The addition of 0.1% PBAT particles significantly increased the Pb content in the shoot of maize plants by 37.60% and Pb content in the root by 65.06% compared with 0.1% PE. The addition of PE and PBAT particles increased the proportion of residual Pb to 36.0% and 38.0%, respectively. The correlation analysis showed that the addition of MPs mainly affected the absorption of Pb by maize plants by affecting soil pH, dissolved organic carbon (DOC), cation exchange capacity (CEC), free crystalline Mn (MnDCB), and amorphous Fe (FeTamm).</p><h3 data-test=\\\"abstract-sub-heading\\\">Conclusions</h3><p>This study demonstrates that biodegradable and nonbiodegradable MPs in soil inhibited Pb accumulation in maize seedling roots. FeDCB, MnDCB, and FeTamm may be the main control factors affecting the inhibition of lead uptake by PE in maize seedling roots. Additionally, FeTamm may be the main controlling factor influencing PBAT to reduce lead accumulation in maize seedling roots. The results of the present study could provide novel insights into the toxicity and bioavailability effects of MPs and Pb on maize, as well as a valuable reference for ongoing research on the ecological risk assessment of MPs and other pollutants in the soil environment.</p>\",\"PeriodicalId\":17139,\"journal\":{\"name\":\"Journal of Soils and Sediments\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Soils and Sediments\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11368-024-03813-x\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Soils and Sediments","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11368-024-03813-x","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

材料与方法采用玉米和两种类型的微塑料颗粒(不可生物降解的聚乙烯(PE)和可生物降解的聚己二酸丁二醇酯/对苯二甲酸丁二醇酯(PBAT)),在四种不同的微塑料颗粒浓度(0、0.1、1和10%)下进行盆栽实验。生长一个月后,测定了玉米幼苗地上部分和地下部分的铅含量、CaCl2 萃取的铅含量、土壤中不同种类铅的比例以及土壤性质。我们测定了玉米幼苗对铅的吸收、土壤理化性质和土壤中铅的种类。结果添加 PE 和 PBAT 颗粒后,玉米根中的铅含量随着浓度的增加而降低。与 0.1% PE 相比,添加 0.1% PBAT 颗粒可使玉米植株芽中的铅含量显著增加 37.60%,根中的铅含量显著增加 65.06%。添加 PE 和 PBAT 颗粒后,残余铅的比例分别增加到 36.0% 和 38.0%。相关分析表明,MPs 的添加主要通过影响土壤 pH 值、溶解有机碳(DOC)、阳离子交换容量(CEC)、游离结晶锰(MnDCB)和无定形铁(FeTamm)来影响玉米植株对铅的吸收。FeDCB、MnDCB 和 FeTamm 可能是影响玉米幼苗根部 PE 对铅吸收抑制作用的主要控制因子。此外,FeTamm 可能是影响 PBAT 减少玉米幼苗根系铅积累的主要控制因子。本研究的结果可为了解多溴联苯和铅对玉米的毒性和生物利用率效应提供新的见解,同时也为正在进行的多溴联苯和其他污染物在土壤环境中的生态风险评估研究提供有价值的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring the Impact of Biodegradable and Nonbiodegradable Microplastic Particles on Pb Absorption in Maize

Purpose

The aim of this study was to explore the effects of the variations in biodegradable and nonbiodegradable microplastic particles (MPs) on the absorption of lead (Pb) in maize.

Materials and methods

Pot experiments were conducted using maize and two types of MPs, nonbiodegradable polyethylene (PE) and biodegradable polybutylene adipate/terephthalate (PBAT), at four different MP concentrations (0, 0.1, 1, and 10%). After one month of growth, the Pb content in aboveground and belowground parts of the maize seedlings, CaCl2-extracted Pb content, the proportion of different speciation of Pb within the soil, and soil properties were determined. We determined Pb uptake by maize seedlings, soil physicochemical properties, and Pb speciation in soil.

Results

The addition of PE and PBAT particles led to the decrease in Pb content in maize root with the increase in concentration. The addition of 0.1% PBAT particles significantly increased the Pb content in the shoot of maize plants by 37.60% and Pb content in the root by 65.06% compared with 0.1% PE. The addition of PE and PBAT particles increased the proportion of residual Pb to 36.0% and 38.0%, respectively. The correlation analysis showed that the addition of MPs mainly affected the absorption of Pb by maize plants by affecting soil pH, dissolved organic carbon (DOC), cation exchange capacity (CEC), free crystalline Mn (MnDCB), and amorphous Fe (FeTamm).

Conclusions

This study demonstrates that biodegradable and nonbiodegradable MPs in soil inhibited Pb accumulation in maize seedling roots. FeDCB, MnDCB, and FeTamm may be the main control factors affecting the inhibition of lead uptake by PE in maize seedling roots. Additionally, FeTamm may be the main controlling factor influencing PBAT to reduce lead accumulation in maize seedling roots. The results of the present study could provide novel insights into the toxicity and bioavailability effects of MPs and Pb on maize, as well as a valuable reference for ongoing research on the ecological risk assessment of MPs and other pollutants in the soil environment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Soils and Sediments
Journal of Soils and Sediments 环境科学-土壤科学
CiteScore
7.00
自引率
5.60%
发文量
256
审稿时长
3.5 months
期刊介绍: The Journal of Soils and Sediments (JSS) is devoted to soils and sediments; it deals with contaminated, intact and disturbed soils and sediments. JSS explores both the common aspects and the differences between these two environmental compartments. Inter-linkages at the catchment scale and with the Earth’s system (inter-compartment) are an important topic in JSS. The range of research coverage includes the effects of disturbances and contamination; research, strategies and technologies for prediction, prevention, and protection; identification and characterization; treatment, remediation and reuse; risk assessment and management; creation and implementation of quality standards; international regulation and legislation.
期刊最新文献
Integrating soil phosphorus sorption capacity with agronomic indices to improve sustainable P use in agriculture Metal pollution in sediments along the Montenegrin coast, Adriatic Sea: a risk analysis Effects of rill morphology characteristics on particle size selectivity using indoor simulation experiments with two types of soil from the Loess Plateau Isotope signature and ecoenzymatic stoichiometry as key indicators of urban soil functionality Pollution of a Black Sea coastal city: potentially toxic elements in urban soils, road dust, and their PM10 fractions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1