{"title":"石油污染促使沿海土壤中磷循环所涉及的微生物群落和代谢途径发生转变","authors":"Lulu Kong, Qiang Shan, Yanling Lai, Ying Wang, Changlin Jin, Caixiu An, Lijuan Yang, Zhifei Zhang","doi":"10.1007/s11368-024-03853-3","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose</h3><p>Soil Phosphorous (P) availability is critical for many important ecological processes and oil-contaminated soil remediation. Despites a few studies confirmed directly effects of crude oil exposure on soil Phosphorus-cycling (P-cycling), how soil microbes and functional genes affiliated with P-cycling respond to crude oil remains poorly understood.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>Here, metagenomics was implemented to analyze variations in the microbial community structure and potential functions associated with P transformation in the coastal soil contaminated by crude oil.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Results showed a dramatic scarcity of P in the contaminated soil. Microbial inorganic P solubilization was governed by genes <i>gcd</i> and <i>ppx</i> in CK soil. In contrast, genes encoding C-P lyase (<i>phnGHIJKLN</i>) and alkaline phosphatase (<i>phoA</i>) displayed significantly greater abundances in the contaminated soils. Taxa annotation revealed that oil contamination altered the structure of the P-cycling microbial community with a bias towards those with oligotrophic characteristics. Specifically, the oil-contaminated soils were characterized by a stronger contribution of <i>Proteobacteria</i>, <i>Ascomycota</i> and <i>Firmicutes</i>. Overall, the strategy for acquiring P in the CK is inorganic P solubilization, while it converted to organic P mineralization under petroleum contamination. Soil N/P ratio played a key role in affecting P-cycling functional genes.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>Our results highlighted that oil contamination with unbalanced N/P ratio greatly altered the microbial strategy for obtaining available P (AP) in soil. A better understanding of P-cycling mechanism exposed to oil contamination and further scientifically regulating it may set the stage for in-depth improvement for current bioremediation practices.</p>","PeriodicalId":17139,"journal":{"name":"Journal of Soils and Sediments","volume":"161 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oil contamination drives the transformation of microbial communities and metabolic pathways involved in Phosphorous-cycling in coastal soil\",\"authors\":\"Lulu Kong, Qiang Shan, Yanling Lai, Ying Wang, Changlin Jin, Caixiu An, Lijuan Yang, Zhifei Zhang\",\"doi\":\"10.1007/s11368-024-03853-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Purpose</h3><p>Soil Phosphorous (P) availability is critical for many important ecological processes and oil-contaminated soil remediation. Despites a few studies confirmed directly effects of crude oil exposure on soil Phosphorus-cycling (P-cycling), how soil microbes and functional genes affiliated with P-cycling respond to crude oil remains poorly understood.</p><h3 data-test=\\\"abstract-sub-heading\\\">Methods</h3><p>Here, metagenomics was implemented to analyze variations in the microbial community structure and potential functions associated with P transformation in the coastal soil contaminated by crude oil.</p><h3 data-test=\\\"abstract-sub-heading\\\">Results</h3><p>Results showed a dramatic scarcity of P in the contaminated soil. Microbial inorganic P solubilization was governed by genes <i>gcd</i> and <i>ppx</i> in CK soil. In contrast, genes encoding C-P lyase (<i>phnGHIJKLN</i>) and alkaline phosphatase (<i>phoA</i>) displayed significantly greater abundances in the contaminated soils. Taxa annotation revealed that oil contamination altered the structure of the P-cycling microbial community with a bias towards those with oligotrophic characteristics. Specifically, the oil-contaminated soils were characterized by a stronger contribution of <i>Proteobacteria</i>, <i>Ascomycota</i> and <i>Firmicutes</i>. Overall, the strategy for acquiring P in the CK is inorganic P solubilization, while it converted to organic P mineralization under petroleum contamination. Soil N/P ratio played a key role in affecting P-cycling functional genes.</p><h3 data-test=\\\"abstract-sub-heading\\\">Conclusion</h3><p>Our results highlighted that oil contamination with unbalanced N/P ratio greatly altered the microbial strategy for obtaining available P (AP) in soil. A better understanding of P-cycling mechanism exposed to oil contamination and further scientifically regulating it may set the stage for in-depth improvement for current bioremediation practices.</p>\",\"PeriodicalId\":17139,\"journal\":{\"name\":\"Journal of Soils and Sediments\",\"volume\":\"161 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Soils and Sediments\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11368-024-03853-3\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Soils and Sediments","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11368-024-03853-3","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
目的土壤磷(P)的可用性对于许多重要的生态过程和石油污染土壤的修复至关重要。尽管有一些研究证实了原油暴露对土壤磷循环(P-cycling)的直接影响,但人们对土壤微生物和与 P-cycling相关的功能基因如何应对原油仍然知之甚少。在 CK 土壤中,微生物的无机钾增溶作用受基因 gcd 和 ppx 的控制。相比之下,编码 C-P 裂解酶(phnGHIJKLN)和碱性磷酸酶(phoA)的基因在受污染土壤中的丰度明显更高。分类群注释显示,石油污染改变了P循环微生物群落的结构,偏向于那些具有寡营养特征的微生物群落。具体来说,受石油污染的土壤中变形菌、子囊菌和固着菌的数量较多。总体而言,CK 中获取 P 的策略是无机 P 溶解,而在石油污染下则转变为有机 P 矿化。我们的研究结果表明,石油污染导致的 N/P 比率失衡极大地改变了土壤中微生物获取可用磷(AP)的策略。更好地了解石油污染下的磷循环机制并进一步对其进行科学调控,可为深入改进当前的生物修复实践奠定基础。
Oil contamination drives the transformation of microbial communities and metabolic pathways involved in Phosphorous-cycling in coastal soil
Purpose
Soil Phosphorous (P) availability is critical for many important ecological processes and oil-contaminated soil remediation. Despites a few studies confirmed directly effects of crude oil exposure on soil Phosphorus-cycling (P-cycling), how soil microbes and functional genes affiliated with P-cycling respond to crude oil remains poorly understood.
Methods
Here, metagenomics was implemented to analyze variations in the microbial community structure and potential functions associated with P transformation in the coastal soil contaminated by crude oil.
Results
Results showed a dramatic scarcity of P in the contaminated soil. Microbial inorganic P solubilization was governed by genes gcd and ppx in CK soil. In contrast, genes encoding C-P lyase (phnGHIJKLN) and alkaline phosphatase (phoA) displayed significantly greater abundances in the contaminated soils. Taxa annotation revealed that oil contamination altered the structure of the P-cycling microbial community with a bias towards those with oligotrophic characteristics. Specifically, the oil-contaminated soils were characterized by a stronger contribution of Proteobacteria, Ascomycota and Firmicutes. Overall, the strategy for acquiring P in the CK is inorganic P solubilization, while it converted to organic P mineralization under petroleum contamination. Soil N/P ratio played a key role in affecting P-cycling functional genes.
Conclusion
Our results highlighted that oil contamination with unbalanced N/P ratio greatly altered the microbial strategy for obtaining available P (AP) in soil. A better understanding of P-cycling mechanism exposed to oil contamination and further scientifically regulating it may set the stage for in-depth improvement for current bioremediation practices.
期刊介绍:
The Journal of Soils and Sediments (JSS) is devoted to soils and sediments; it deals with contaminated, intact and disturbed soils and sediments. JSS explores both the common aspects and the differences between these two environmental compartments. Inter-linkages at the catchment scale and with the Earth’s system (inter-compartment) are an important topic in JSS. The range of research coverage includes the effects of disturbances and contamination; research, strategies and technologies for prediction, prevention, and protection; identification and characterization; treatment, remediation and reuse; risk assessment and management; creation and implementation of quality standards; international regulation and legislation.