模糊社会网络分析:大学院系合作网络的理论与应用

Annamaria Porreca, Fabrizio Maturo, Viviana Ventre
{"title":"模糊社会网络分析:大学院系合作网络的理论与应用","authors":"Annamaria Porreca, Fabrizio Maturo, Viviana Ventre","doi":"arxiv-2407.02401","DOIUrl":null,"url":null,"abstract":"Social network analysis (SNA) helps us understand the relationships and\ninteractions between individuals, groups, organisations, or other social\nentities. In SNA, ties are generally binary or weighted based on their\nstrength. Nonetheless, when actors are individuals, the relationships between\nactors are often imprecise and identifying them with simple scalars leads to\ninformation loss. Social relationships are often vague in real life. Despite\nmany classical social network techniques contemplate the use of weighted links,\nthese approaches do not align with the original philosophy of fuzzy logic,\nwhich instead aims to preserve the vagueness inherent in human language and\nreal life. Dealing with imprecise ties and introducing fuzziness in the\ndefinition of relationships requires an extension of social network analysis to\nfuzzy numbers instead of crisp values. The mathematical formalisation for this\ngeneralisation needs to extend classical centrality indices and operations to\nfuzzy numbers. For this reason, this paper proposes a generalisation of the\nso-called Fuzzy Social Network Analysis (FSNA) to the context of imprecise\nrelationships among actors. The article shows the theory and application of\nreal data collected through a fascinating mouse tracking technique to study the\nfuzzy relationships in a collaboration network among the members of a\nUniversity department.","PeriodicalId":501323,"journal":{"name":"arXiv - STAT - Other Statistics","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fuzzy Social Network Analysis: Theory and Application in a University Department's Collaboration Network\",\"authors\":\"Annamaria Porreca, Fabrizio Maturo, Viviana Ventre\",\"doi\":\"arxiv-2407.02401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social network analysis (SNA) helps us understand the relationships and\\ninteractions between individuals, groups, organisations, or other social\\nentities. In SNA, ties are generally binary or weighted based on their\\nstrength. Nonetheless, when actors are individuals, the relationships between\\nactors are often imprecise and identifying them with simple scalars leads to\\ninformation loss. Social relationships are often vague in real life. Despite\\nmany classical social network techniques contemplate the use of weighted links,\\nthese approaches do not align with the original philosophy of fuzzy logic,\\nwhich instead aims to preserve the vagueness inherent in human language and\\nreal life. Dealing with imprecise ties and introducing fuzziness in the\\ndefinition of relationships requires an extension of social network analysis to\\nfuzzy numbers instead of crisp values. The mathematical formalisation for this\\ngeneralisation needs to extend classical centrality indices and operations to\\nfuzzy numbers. For this reason, this paper proposes a generalisation of the\\nso-called Fuzzy Social Network Analysis (FSNA) to the context of imprecise\\nrelationships among actors. The article shows the theory and application of\\nreal data collected through a fascinating mouse tracking technique to study the\\nfuzzy relationships in a collaboration network among the members of a\\nUniversity department.\",\"PeriodicalId\":501323,\"journal\":{\"name\":\"arXiv - STAT - Other Statistics\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Other Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.02401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Other Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.02401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

社会网络分析(SNA)有助于我们了解个人、团体、组织或其他社会实体之间的关系和互动。在 SNA 中,联系通常是二元的,或根据其强度加权。然而,当行动者是个人时,行动者之间的关系往往是不精确的,用简单的标量来识别会导致信息丢失。在现实生活中,社会关系往往是模糊的。尽管许多经典的社会网络技术都考虑使用加权链接,但这些方法并不符合模糊逻辑的最初理念,而模糊逻辑的目标是保留人类语言和现实生活中固有的模糊性。要处理不精确的联系并在关系定义中引入模糊性,就需要将社会网络分析扩展到模糊数而不是清晰值。这种扩展的数学形式化需要将经典的中心度指数和运算扩展到模糊数。为此,本文提出了将所谓的模糊社会网络分析(FSNA)推广到行动者之间不精确关系的环境中。文章展示了通过引人入胜的鼠标跟踪技术收集到的真实数据的理论和应用,以研究大学某系成员之间合作网络中的模糊关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fuzzy Social Network Analysis: Theory and Application in a University Department's Collaboration Network
Social network analysis (SNA) helps us understand the relationships and interactions between individuals, groups, organisations, or other social entities. In SNA, ties are generally binary or weighted based on their strength. Nonetheless, when actors are individuals, the relationships between actors are often imprecise and identifying them with simple scalars leads to information loss. Social relationships are often vague in real life. Despite many classical social network techniques contemplate the use of weighted links, these approaches do not align with the original philosophy of fuzzy logic, which instead aims to preserve the vagueness inherent in human language and real life. Dealing with imprecise ties and introducing fuzziness in the definition of relationships requires an extension of social network analysis to fuzzy numbers instead of crisp values. The mathematical formalisation for this generalisation needs to extend classical centrality indices and operations to fuzzy numbers. For this reason, this paper proposes a generalisation of the so-called Fuzzy Social Network Analysis (FSNA) to the context of imprecise relationships among actors. The article shows the theory and application of real data collected through a fascinating mouse tracking technique to study the fuzzy relationships in a collaboration network among the members of a University department.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Censored Data Forecasting: Applying Tobit Exponential Smoothing with Time Aggregation How to survive the Squid Games using probability theory Cross-sectional personal network analysis of adult smoking in rural areas Modeling information spread across networks with communities using a multitype branching process framework Asymptotic confidence intervals for the difference and the ratio of the weighted kappa coefficients of two diagnostic tests subject to a paired design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1