G. Trifeldaite-Baranauskiene, E. Stankute, A. Aniskevich, D. Zeleniakiene, K. Zukiene
{"title":"利用工业废料制备复合材料并确定其特性:木粉和膨胀乙烯醋酸乙烯酯","authors":"G. Trifeldaite-Baranauskiene, E. Stankute, A. Aniskevich, D. Zeleniakiene, K. Zukiene","doi":"10.1007/s11029-024-10202-5","DOIUrl":null,"url":null,"abstract":"<p>The aim of the present study is to use beech wood flour (WF) and expanded ethylene vinyl acetate (EVA) copolymer industrial waste to develop a sustainable composite and its production method for further engineering use. Polyamide (PA) powder waste obtained after multiple selective laser sintering (SLS) thermal cycles was used to increase the strength and adhesion between the waste composite components. The morphological, mechanical, and thermal properties of the EVA/WF composites were characterised along with their interfacial wetting and water absorption properties. Optical and electron microscopy investigations revealed that the composites prepared have homogeneous dispersion and good interfacial adhesion between EVA and wood. The addition of SLS waste PA powder increases the strength and stiffness of the composite developed. The composite with 40 wt% WF exhibited the best water absorption, mechanical properties, and processability among the various compositions. The sustainable composite proposed can replace commercially available materials, which helps to save resources and reduce waste.</p>","PeriodicalId":18308,"journal":{"name":"Mechanics of Composite Materials","volume":"166 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation and Characterisation of Composites from Industrial Waste: Wood Flour and Expanded Ethylene Vinyl Acetate\",\"authors\":\"G. Trifeldaite-Baranauskiene, E. Stankute, A. Aniskevich, D. Zeleniakiene, K. Zukiene\",\"doi\":\"10.1007/s11029-024-10202-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The aim of the present study is to use beech wood flour (WF) and expanded ethylene vinyl acetate (EVA) copolymer industrial waste to develop a sustainable composite and its production method for further engineering use. Polyamide (PA) powder waste obtained after multiple selective laser sintering (SLS) thermal cycles was used to increase the strength and adhesion between the waste composite components. The morphological, mechanical, and thermal properties of the EVA/WF composites were characterised along with their interfacial wetting and water absorption properties. Optical and electron microscopy investigations revealed that the composites prepared have homogeneous dispersion and good interfacial adhesion between EVA and wood. The addition of SLS waste PA powder increases the strength and stiffness of the composite developed. The composite with 40 wt% WF exhibited the best water absorption, mechanical properties, and processability among the various compositions. The sustainable composite proposed can replace commercially available materials, which helps to save resources and reduce waste.</p>\",\"PeriodicalId\":18308,\"journal\":{\"name\":\"Mechanics of Composite Materials\",\"volume\":\"166 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s11029-024-10202-5\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11029-024-10202-5","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Preparation and Characterisation of Composites from Industrial Waste: Wood Flour and Expanded Ethylene Vinyl Acetate
The aim of the present study is to use beech wood flour (WF) and expanded ethylene vinyl acetate (EVA) copolymer industrial waste to develop a sustainable composite and its production method for further engineering use. Polyamide (PA) powder waste obtained after multiple selective laser sintering (SLS) thermal cycles was used to increase the strength and adhesion between the waste composite components. The morphological, mechanical, and thermal properties of the EVA/WF composites were characterised along with their interfacial wetting and water absorption properties. Optical and electron microscopy investigations revealed that the composites prepared have homogeneous dispersion and good interfacial adhesion between EVA and wood. The addition of SLS waste PA powder increases the strength and stiffness of the composite developed. The composite with 40 wt% WF exhibited the best water absorption, mechanical properties, and processability among the various compositions. The sustainable composite proposed can replace commercially available materials, which helps to save resources and reduce waste.
期刊介绍:
Mechanics of Composite Materials is a peer-reviewed international journal that encourages publication of original experimental and theoretical research on the mechanical properties of composite materials and their constituents including, but not limited to:
damage, failure, fatigue, and long-term strength;
methods of optimum design of materials and structures;
prediction of long-term properties and aging problems;
nondestructive testing;
mechanical aspects of technology;
mechanics of nanocomposites;
mechanics of biocomposites;
composites in aerospace and wind-power engineering;
composites in civil engineering and infrastructure
and other composites applications.