{"title":"基于生成设计的多目标建筑工地布局规划优化模型","authors":"Hossam Wefki, Mona Salah, Emad Elbeltagi, Asser Elsheikh, Rana Khallaf","doi":"10.1108/ecam-11-2023-1193","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>Given the growing interest in modern construction techniques and the emergence of innovative technologies, construction site layout planning research has progressively been investigating approaches to adopt innovative concepts and incorporate renewed approaches to improve widespread efficiency. This research develops a decision-making tool that optimizes construction site layout plans. The developed model targets two main objectives: minimizing material transportation costs and maximizing safety by optimally placing facilities on construction sites.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>A novel approach is devised based on the integration of Building Information Modeling and Generative Design (BIM-GD). This engine is used to optimize the multi-objective site layout problems to identify layout alternatives in the early project stages. Parametric modeling uses Dynamo to construct the model and explore constraints initially. Finally, the GD environment is utilized to create different design alternatives, and then the decision-making procedure selects the most appropriate design alternative. Additionally, a case study is applied to validate the effectiveness of the developed model.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The results indicate the effectiveness of the proposed GD tool and its potential for more complex applications. The GD engine examined optimal layout plans, balancing different objectives and adhering to appointed geometric constraints. A case study was conducted to assess the model's effectiveness and showcase its suitability. Construction Site Layout Planning (CSLP) is an essential step in design that can influence considerable aspects, such as material transportation expenses and different safety standards on the site. Employing visual programming for parametric modeling within Dynamo-Revit creates an expedient and user-friendly platform for planning engineers who may require more programming expertise to create and program algorithmic models visually. Utilizing GD in CSLP has proven to be a powerful tool with consequential prospects for improving applications and executing more models.</p><!--/ Abstract__block -->\n<h3>Practical implications</h3>\n<p>The findings from this framework are intended to help construction practitioners select the most appropriate site layout during early project stages while incorporating different safety criteria inside construction sites to alleviate actual safety risks.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>A new approach is proposed that utilizes an integrated BIM-GD engine to optimize multi-objective site layout problems. This approach targets two main objectives: minimizing material transportation costs and maximizing safety by optimally placing facilities in construction sites.</p><!--/ Abstract__block -->","PeriodicalId":11888,"journal":{"name":"Engineering, Construction and Architectural Management","volume":"13 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A generative design-based optimization model for multi-objective construction site layout planning\",\"authors\":\"Hossam Wefki, Mona Salah, Emad Elbeltagi, Asser Elsheikh, Rana Khallaf\",\"doi\":\"10.1108/ecam-11-2023-1193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>Given the growing interest in modern construction techniques and the emergence of innovative technologies, construction site layout planning research has progressively been investigating approaches to adopt innovative concepts and incorporate renewed approaches to improve widespread efficiency. This research develops a decision-making tool that optimizes construction site layout plans. The developed model targets two main objectives: minimizing material transportation costs and maximizing safety by optimally placing facilities on construction sites.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>A novel approach is devised based on the integration of Building Information Modeling and Generative Design (BIM-GD). This engine is used to optimize the multi-objective site layout problems to identify layout alternatives in the early project stages. Parametric modeling uses Dynamo to construct the model and explore constraints initially. Finally, the GD environment is utilized to create different design alternatives, and then the decision-making procedure selects the most appropriate design alternative. Additionally, a case study is applied to validate the effectiveness of the developed model.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>The results indicate the effectiveness of the proposed GD tool and its potential for more complex applications. The GD engine examined optimal layout plans, balancing different objectives and adhering to appointed geometric constraints. A case study was conducted to assess the model's effectiveness and showcase its suitability. Construction Site Layout Planning (CSLP) is an essential step in design that can influence considerable aspects, such as material transportation expenses and different safety standards on the site. Employing visual programming for parametric modeling within Dynamo-Revit creates an expedient and user-friendly platform for planning engineers who may require more programming expertise to create and program algorithmic models visually. Utilizing GD in CSLP has proven to be a powerful tool with consequential prospects for improving applications and executing more models.</p><!--/ Abstract__block -->\\n<h3>Practical implications</h3>\\n<p>The findings from this framework are intended to help construction practitioners select the most appropriate site layout during early project stages while incorporating different safety criteria inside construction sites to alleviate actual safety risks.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>A new approach is proposed that utilizes an integrated BIM-GD engine to optimize multi-objective site layout problems. This approach targets two main objectives: minimizing material transportation costs and maximizing safety by optimally placing facilities in construction sites.</p><!--/ Abstract__block -->\",\"PeriodicalId\":11888,\"journal\":{\"name\":\"Engineering, Construction and Architectural Management\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering, Construction and Architectural Management\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/ecam-11-2023-1193\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering, Construction and Architectural Management","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/ecam-11-2023-1193","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
A generative design-based optimization model for multi-objective construction site layout planning
Purpose
Given the growing interest in modern construction techniques and the emergence of innovative technologies, construction site layout planning research has progressively been investigating approaches to adopt innovative concepts and incorporate renewed approaches to improve widespread efficiency. This research develops a decision-making tool that optimizes construction site layout plans. The developed model targets two main objectives: minimizing material transportation costs and maximizing safety by optimally placing facilities on construction sites.
Design/methodology/approach
A novel approach is devised based on the integration of Building Information Modeling and Generative Design (BIM-GD). This engine is used to optimize the multi-objective site layout problems to identify layout alternatives in the early project stages. Parametric modeling uses Dynamo to construct the model and explore constraints initially. Finally, the GD environment is utilized to create different design alternatives, and then the decision-making procedure selects the most appropriate design alternative. Additionally, a case study is applied to validate the effectiveness of the developed model.
Findings
The results indicate the effectiveness of the proposed GD tool and its potential for more complex applications. The GD engine examined optimal layout plans, balancing different objectives and adhering to appointed geometric constraints. A case study was conducted to assess the model's effectiveness and showcase its suitability. Construction Site Layout Planning (CSLP) is an essential step in design that can influence considerable aspects, such as material transportation expenses and different safety standards on the site. Employing visual programming for parametric modeling within Dynamo-Revit creates an expedient and user-friendly platform for planning engineers who may require more programming expertise to create and program algorithmic models visually. Utilizing GD in CSLP has proven to be a powerful tool with consequential prospects for improving applications and executing more models.
Practical implications
The findings from this framework are intended to help construction practitioners select the most appropriate site layout during early project stages while incorporating different safety criteria inside construction sites to alleviate actual safety risks.
Originality/value
A new approach is proposed that utilizes an integrated BIM-GD engine to optimize multi-objective site layout problems. This approach targets two main objectives: minimizing material transportation costs and maximizing safety by optimally placing facilities in construction sites.
期刊介绍:
ECAM publishes original peer-reviewed research papers, case studies, technical notes, book reviews, features, discussions and other contemporary articles that advance research and practice in engineering, construction and architectural management. In particular, ECAM seeks to advance integrated design and construction practices, project lifecycle management, and sustainable construction. The journal’s scope covers all aspects of architectural design, design management, construction/project management, engineering management of major infrastructure projects, and the operation and management of constructed facilities. ECAM also addresses the technological, process, economic/business, environmental/sustainability, political, and social/human developments that influence the construction project delivery process.
ECAM strives to establish strong theoretical and empirical debates in the above areas of engineering, architecture, and construction research. Papers should be heavily integrated with the existing and current body of knowledge within the field and develop explicit and novel contributions. Acknowledging the global character of the field, we welcome papers on regional studies but encourage authors to position the work within the broader international context by reviewing and comparing findings from their regional study with studies conducted in other regions or countries whenever possible.