{"title":"纤维波纹对聚合物复合材料刚度的影响","authors":"D. A. Bondarchuk, B. N. Fedulov, E. V. Lomakin","doi":"10.1007/s11029-024-10212-3","DOIUrl":null,"url":null,"abstract":"<p>It is known that the initial fiber waviness affects the stiffness and strength of the polymer composite material. The influence of degree of waviness on stiffness characteristics under uniaxial tension and compression of a polymer composite material was investigated by using numerical modeling. A computational approach based on a special periodicity cell with different fiber waviness was developed. The hypothesis regarding the impact of manufacturing stresses, appearing during a curing process on waviness growth, was tested. The results obtained explain the mechanism that causes difference in the stiffness observed in fiber composites in the longitudinal direction under uniaxial tension and compression.</p>","PeriodicalId":18308,"journal":{"name":"Mechanics of Composite Materials","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effect of Fiber Waviness on the Stiffness of a Polymer Composite Material\",\"authors\":\"D. A. Bondarchuk, B. N. Fedulov, E. V. Lomakin\",\"doi\":\"10.1007/s11029-024-10212-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It is known that the initial fiber waviness affects the stiffness and strength of the polymer composite material. The influence of degree of waviness on stiffness characteristics under uniaxial tension and compression of a polymer composite material was investigated by using numerical modeling. A computational approach based on a special periodicity cell with different fiber waviness was developed. The hypothesis regarding the impact of manufacturing stresses, appearing during a curing process on waviness growth, was tested. The results obtained explain the mechanism that causes difference in the stiffness observed in fiber composites in the longitudinal direction under uniaxial tension and compression.</p>\",\"PeriodicalId\":18308,\"journal\":{\"name\":\"Mechanics of Composite Materials\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s11029-024-10212-3\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11029-024-10212-3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
The Effect of Fiber Waviness on the Stiffness of a Polymer Composite Material
It is known that the initial fiber waviness affects the stiffness and strength of the polymer composite material. The influence of degree of waviness on stiffness characteristics under uniaxial tension and compression of a polymer composite material was investigated by using numerical modeling. A computational approach based on a special periodicity cell with different fiber waviness was developed. The hypothesis regarding the impact of manufacturing stresses, appearing during a curing process on waviness growth, was tested. The results obtained explain the mechanism that causes difference in the stiffness observed in fiber composites in the longitudinal direction under uniaxial tension and compression.
期刊介绍:
Mechanics of Composite Materials is a peer-reviewed international journal that encourages publication of original experimental and theoretical research on the mechanical properties of composite materials and their constituents including, but not limited to:
damage, failure, fatigue, and long-term strength;
methods of optimum design of materials and structures;
prediction of long-term properties and aging problems;
nondestructive testing;
mechanical aspects of technology;
mechanics of nanocomposites;
mechanics of biocomposites;
composites in aerospace and wind-power engineering;
composites in civil engineering and infrastructure
and other composites applications.