双碳层基质协同改善了氧化锰的锌离子储存性能

IF 10.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Carbon Pub Date : 2024-06-28 DOI:10.1016/j.carbon.2024.119403
Huiting Xu , Meng Li , Peng Guo , Wenyue Yang , Chunli Li , Honghai Wang , Wenchao Peng , Liu Jiapeng
{"title":"双碳层基质协同改善了氧化锰的锌离子储存性能","authors":"Huiting Xu ,&nbsp;Meng Li ,&nbsp;Peng Guo ,&nbsp;Wenyue Yang ,&nbsp;Chunli Li ,&nbsp;Honghai Wang ,&nbsp;Wenchao Peng ,&nbsp;Liu Jiapeng","doi":"10.1016/j.carbon.2024.119403","DOIUrl":null,"url":null,"abstract":"<div><p>Aqueous zinc-ion batteries (AZIBs) have become a hot topic in study owing to their abundance of zinc resources, environmental friendliness, high capacity, and low cost. Nevertheless, the majority of cathode materials utilized in AZIBs frequently exhibit suboptimal electrical conductivity and structural instability, which restrict their application in energy storage. Here, a carbon-coated manganese oxide anchored on carbon skeleton (MnO–C@C) hybrid was synthesized using a simple and scalable method. The electrical conductivity of MnO can be enhanced by the double carbon layer. The presence of carbon skeleton effectively inhibits the agglomeration phenomenon of MnO and exposes more active sites. Meanwhile, the interaction force between the coated carbon and MnO effectively increases the structural stability of MnO. Taking advantage of the synergistic effect, the MnO–C@C hybrid shows an exceptional specific capacity of 409 mAh g<sup>−1</sup> at 50 mA g<sup>−1</sup> and outstanding cycling stability of 1000 cycles at 2000 mA g<sup>−1</sup> (low decay rate of 0.0058 % per cycle). Besides, the reaction mechanisms are investigated via various characterizations. This work presents an inspired solution for developing manganese-based cathode materials in AZIBs.</p></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":null,"pages":null},"PeriodicalIF":10.5000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Double carbon layer matrix synergistically improved the zinc-ion storage performance of manganese oxide\",\"authors\":\"Huiting Xu ,&nbsp;Meng Li ,&nbsp;Peng Guo ,&nbsp;Wenyue Yang ,&nbsp;Chunli Li ,&nbsp;Honghai Wang ,&nbsp;Wenchao Peng ,&nbsp;Liu Jiapeng\",\"doi\":\"10.1016/j.carbon.2024.119403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aqueous zinc-ion batteries (AZIBs) have become a hot topic in study owing to their abundance of zinc resources, environmental friendliness, high capacity, and low cost. Nevertheless, the majority of cathode materials utilized in AZIBs frequently exhibit suboptimal electrical conductivity and structural instability, which restrict their application in energy storage. Here, a carbon-coated manganese oxide anchored on carbon skeleton (MnO–C@C) hybrid was synthesized using a simple and scalable method. The electrical conductivity of MnO can be enhanced by the double carbon layer. The presence of carbon skeleton effectively inhibits the agglomeration phenomenon of MnO and exposes more active sites. Meanwhile, the interaction force between the coated carbon and MnO effectively increases the structural stability of MnO. Taking advantage of the synergistic effect, the MnO–C@C hybrid shows an exceptional specific capacity of 409 mAh g<sup>−1</sup> at 50 mA g<sup>−1</sup> and outstanding cycling stability of 1000 cycles at 2000 mA g<sup>−1</sup> (low decay rate of 0.0058 % per cycle). Besides, the reaction mechanisms are investigated via various characterizations. This work presents an inspired solution for developing manganese-based cathode materials in AZIBs.</p></div>\",\"PeriodicalId\":262,\"journal\":{\"name\":\"Carbon\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0008622324006225\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622324006225","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

锌离子水电池(AZIBs)具有锌资源丰富、环境友好、容量大、成本低等优点,已成为研究的热点。然而,大多数用于 AZIB 的阴极材料经常表现出导电性不理想和结构不稳定的问题,这限制了它们在储能领域的应用。在此,我们采用一种简单且可扩展的方法合成了一种锚定在碳骨架上的碳包覆氧化锰(MnO-C@C)混合材料。双碳层可以增强氧化锰的导电性。碳骨架的存在有效抑制了氧化锰的团聚现象,并暴露出更多的活性位点。同时,涂覆碳与氧化锰之间的相互作用力有效提高了氧化锰的结构稳定性。利用这种协同效应,MnO-C@C 混合电池在 50 mA g-1 电流条件下的比容量达到了 409 mAh g-1,在 2000 mA g-1 电流条件下的循环稳定性达到了 1000 次(每循环衰减率低至 0.0058%)。此外,还通过各种特性分析研究了反应机制。这项研究为开发 AZIB 中的锰基阴极材料提供了一种灵感解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Double carbon layer matrix synergistically improved the zinc-ion storage performance of manganese oxide

Aqueous zinc-ion batteries (AZIBs) have become a hot topic in study owing to their abundance of zinc resources, environmental friendliness, high capacity, and low cost. Nevertheless, the majority of cathode materials utilized in AZIBs frequently exhibit suboptimal electrical conductivity and structural instability, which restrict their application in energy storage. Here, a carbon-coated manganese oxide anchored on carbon skeleton (MnO–C@C) hybrid was synthesized using a simple and scalable method. The electrical conductivity of MnO can be enhanced by the double carbon layer. The presence of carbon skeleton effectively inhibits the agglomeration phenomenon of MnO and exposes more active sites. Meanwhile, the interaction force between the coated carbon and MnO effectively increases the structural stability of MnO. Taking advantage of the synergistic effect, the MnO–C@C hybrid shows an exceptional specific capacity of 409 mAh g−1 at 50 mA g−1 and outstanding cycling stability of 1000 cycles at 2000 mA g−1 (low decay rate of 0.0058 % per cycle). Besides, the reaction mechanisms are investigated via various characterizations. This work presents an inspired solution for developing manganese-based cathode materials in AZIBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon
Carbon 工程技术-材料科学:综合
CiteScore
20.80
自引率
7.30%
发文量
0
审稿时长
23 days
期刊介绍: The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.
期刊最新文献
Biomimetic mineralization synergistic combustion activation to construct honeycomb porous carbon anode for sodium-ion batteries Editorial Board Outside Front Cover - Journal name, Cover image, Volume issue details, ISSN, Cover Date, Elsevier Logo and Society Logo if required Multi-scale structural design of multilayer magnetic composite materials for ultra-wideband microwave absorption Mechanically neutral and facile monitoring of thermoset matrices with ultrathin and highly porous carbon nanotube films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1