掺杂 N 的氧化石墨烯量子点与 MoS2 和 Al2O3 纳米复合材料在甘油水溶液中作为润滑添加剂的制备与摩擦学行为

IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL Tribology Letters Pub Date : 2024-07-03 DOI:10.1007/s11249-024-01885-x
Sang Xiong, Jiaqi He, Chenglong Wang
{"title":"掺杂 N 的氧化石墨烯量子点与 MoS2 和 Al2O3 纳米复合材料在甘油水溶液中作为润滑添加剂的制备与摩擦学行为","authors":"Sang Xiong,&nbsp;Jiaqi He,&nbsp;Chenglong Wang","doi":"10.1007/s11249-024-01885-x","DOIUrl":null,"url":null,"abstract":"<div><p>N-doped graphene oxide quantum dots (NGOQDs) with MoS<sub>2</sub> and Al<sub>2</sub>O<sub>3</sub> nanocomposites were prepared by solvothermal method. The morphology and the composition and structure of the prepared composites were characterized by TEM, XRD, Raman, ATR-FTIR, and XPS. Tribological behavior of NGOQDs-MoS<sub>2</sub> and NGOQDs-Al<sub>2</sub>O<sub>3</sub> nanocomposites as lubricant additive in aqueous glycerol were studied. Through experiments and MD simulations, the tribochemistry-induced lubrication mechanism was disclosed. The results shows that the combination of NGOQDs and hydrated glycerol can significantly improve lubrication performance, and the addition of NGOQDs-MoS<sub>2</sub> and NGOQDs-Al<sub>2</sub>O<sub>3</sub> nanoparticles can further improve tribological properties. The formation of a tribofilm through tribochemical induced lubrication mechanism improves the wear resistance of metal surfaces.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation and Tribological Behavior of N-doped Graphene Oxide Quantum Dots with MoS2 and Al2O3 Nanocomposites as Lubricant Additive in Aqueous Glycerol\",\"authors\":\"Sang Xiong,&nbsp;Jiaqi He,&nbsp;Chenglong Wang\",\"doi\":\"10.1007/s11249-024-01885-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>N-doped graphene oxide quantum dots (NGOQDs) with MoS<sub>2</sub> and Al<sub>2</sub>O<sub>3</sub> nanocomposites were prepared by solvothermal method. The morphology and the composition and structure of the prepared composites were characterized by TEM, XRD, Raman, ATR-FTIR, and XPS. Tribological behavior of NGOQDs-MoS<sub>2</sub> and NGOQDs-Al<sub>2</sub>O<sub>3</sub> nanocomposites as lubricant additive in aqueous glycerol were studied. Through experiments and MD simulations, the tribochemistry-induced lubrication mechanism was disclosed. The results shows that the combination of NGOQDs and hydrated glycerol can significantly improve lubrication performance, and the addition of NGOQDs-MoS<sub>2</sub> and NGOQDs-Al<sub>2</sub>O<sub>3</sub> nanoparticles can further improve tribological properties. The formation of a tribofilm through tribochemical induced lubrication mechanism improves the wear resistance of metal surfaces.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":806,\"journal\":{\"name\":\"Tribology Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tribology Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11249-024-01885-x\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology Letters","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11249-024-01885-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

采用溶热法制备了 N 掺杂氧化石墨烯量子点(NGOQDs)与 MoS2 和 Al2O3 纳米复合材料。利用 TEM、XRD、拉曼、ATR-FTIR 和 XPS 对所制备的复合材料的形貌、组成和结构进行了表征。研究了 NGOQDs-MoS2 和 NGOQDs-Al2O3 纳米复合材料作为润滑添加剂在甘油水溶液中的摩擦学行为。通过实验和 MD 模拟,揭示了摩擦化学诱导的润滑机理。结果表明,NGOQDs 与水合甘油的结合能显著改善润滑性能,而添加 NGOQDs-MoS2 和 NGOQDs-Al2O3 纳米粒子能进一步改善摩擦学性能。通过摩擦化学诱导润滑机制形成的三膜提高了金属表面的耐磨性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preparation and Tribological Behavior of N-doped Graphene Oxide Quantum Dots with MoS2 and Al2O3 Nanocomposites as Lubricant Additive in Aqueous Glycerol

N-doped graphene oxide quantum dots (NGOQDs) with MoS2 and Al2O3 nanocomposites were prepared by solvothermal method. The morphology and the composition and structure of the prepared composites were characterized by TEM, XRD, Raman, ATR-FTIR, and XPS. Tribological behavior of NGOQDs-MoS2 and NGOQDs-Al2O3 nanocomposites as lubricant additive in aqueous glycerol were studied. Through experiments and MD simulations, the tribochemistry-induced lubrication mechanism was disclosed. The results shows that the combination of NGOQDs and hydrated glycerol can significantly improve lubrication performance, and the addition of NGOQDs-MoS2 and NGOQDs-Al2O3 nanoparticles can further improve tribological properties. The formation of a tribofilm through tribochemical induced lubrication mechanism improves the wear resistance of metal surfaces.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tribology Letters
Tribology Letters 工程技术-工程:化工
CiteScore
5.30
自引率
9.40%
发文量
116
审稿时长
2.5 months
期刊介绍: Tribology Letters is devoted to the development of the science of tribology and its applications, particularly focusing on publishing high-quality papers at the forefront of tribological science and that address the fundamentals of friction, lubrication, wear, or adhesion. The journal facilitates communication and exchange of seminal ideas among thousands of practitioners who are engaged worldwide in the pursuit of tribology-based science and technology.
期刊最新文献
Wear Mechanism and Wear Debris Characterization of ULWPE in Multidirectional Motion Cobalt- and Chromium-Oxide-Based Coatings: Thermally Spraying a Glaze Layer Visualization of Structural Deformation of Polymer Additives in Oil Under High Shear Flow Influence of Variable-Depth Groove Texture on the Friction and Wear Performance of GCr15–SiC Friction Pairs Under Water Lubrication The Flow of Lubricant as a Mist in the Piston Assembly and Crankcase of a Fired Gasoline Engine: The Effect of Viscosity Modifier and the Link to Lubricant Degradation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1