Kai Lv, Haobo Chen, Chuyang Zhao, Kai Tu, Junru Chen, Yadong Li, Boxun Li, Youfang Lin
{"title":"可通用的人员再识别的风格变量和无关学习","authors":"Kai Lv, Haobo Chen, Chuyang Zhao, Kai Tu, Junru Chen, Yadong Li, Boxun Li, Youfang Lin","doi":"10.1145/3671003","DOIUrl":null,"url":null,"abstract":"<p>Domain Generalization person Re-identification (DG-ReID) has gained much attention recently due to the poor performance of supervised re-identification on unseen domains. The goal of domain generalization is to develop a model that is insensitive to domain bias and can perform well across different domains. In this paper, We conduct experiments to verify the importance of style factors in domain bias. Specifically, the experiments are to affirm that style bias across different domains significantly contributes to domain bias. Based on this observation, we propose Style Variable and Irrelevant Learning (SVIL) to eliminate the influence of style factors on the model. Specifically, we employ a Style Jitter Module (SJM) that enhances the style diversity of a specific source domain and reduces the style differences among various source domains. This allows the model to focus on identity-relevant information and be robust to style changes. We also integrate the SJM module with a meta-learning algorithm to further enhance the model’s generalization ability. Notably, our SJM module is easy to implement and does not add any inference cost. Our extensive experiments demonstrate the effectiveness of our approach, which outperforms existing methods on DG-ReID benchmarks.</p>","PeriodicalId":50937,"journal":{"name":"ACM Transactions on Multimedia Computing Communications and Applications","volume":"26 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Style Variable and Irrelevant Learning for Generalizable Person Re-identification\",\"authors\":\"Kai Lv, Haobo Chen, Chuyang Zhao, Kai Tu, Junru Chen, Yadong Li, Boxun Li, Youfang Lin\",\"doi\":\"10.1145/3671003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Domain Generalization person Re-identification (DG-ReID) has gained much attention recently due to the poor performance of supervised re-identification on unseen domains. The goal of domain generalization is to develop a model that is insensitive to domain bias and can perform well across different domains. In this paper, We conduct experiments to verify the importance of style factors in domain bias. Specifically, the experiments are to affirm that style bias across different domains significantly contributes to domain bias. Based on this observation, we propose Style Variable and Irrelevant Learning (SVIL) to eliminate the influence of style factors on the model. Specifically, we employ a Style Jitter Module (SJM) that enhances the style diversity of a specific source domain and reduces the style differences among various source domains. This allows the model to focus on identity-relevant information and be robust to style changes. We also integrate the SJM module with a meta-learning algorithm to further enhance the model’s generalization ability. Notably, our SJM module is easy to implement and does not add any inference cost. Our extensive experiments demonstrate the effectiveness of our approach, which outperforms existing methods on DG-ReID benchmarks.</p>\",\"PeriodicalId\":50937,\"journal\":{\"name\":\"ACM Transactions on Multimedia Computing Communications and Applications\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Multimedia Computing Communications and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3671003\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Multimedia Computing Communications and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3671003","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Style Variable and Irrelevant Learning for Generalizable Person Re-identification
Domain Generalization person Re-identification (DG-ReID) has gained much attention recently due to the poor performance of supervised re-identification on unseen domains. The goal of domain generalization is to develop a model that is insensitive to domain bias and can perform well across different domains. In this paper, We conduct experiments to verify the importance of style factors in domain bias. Specifically, the experiments are to affirm that style bias across different domains significantly contributes to domain bias. Based on this observation, we propose Style Variable and Irrelevant Learning (SVIL) to eliminate the influence of style factors on the model. Specifically, we employ a Style Jitter Module (SJM) that enhances the style diversity of a specific source domain and reduces the style differences among various source domains. This allows the model to focus on identity-relevant information and be robust to style changes. We also integrate the SJM module with a meta-learning algorithm to further enhance the model’s generalization ability. Notably, our SJM module is easy to implement and does not add any inference cost. Our extensive experiments demonstrate the effectiveness of our approach, which outperforms existing methods on DG-ReID benchmarks.
期刊介绍:
The ACM Transactions on Multimedia Computing, Communications, and Applications is the flagship publication of the ACM Special Interest Group in Multimedia (SIGMM). It is soliciting paper submissions on all aspects of multimedia. Papers on single media (for instance, audio, video, animation) and their processing are also welcome.
TOMM is a peer-reviewed, archival journal, available in both print form and digital form. The Journal is published quarterly; with roughly 7 23-page articles in each issue. In addition, all Special Issues are published online-only to ensure a timely publication. The transactions consists primarily of research papers. This is an archival journal and it is intended that the papers will have lasting importance and value over time. In general, papers whose primary focus is on particular multimedia products or the current state of the industry will not be included.