预防性损失函数下乘法区域级模型中的受限贝叶斯

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY Canadian Journal of Statistics-Revue Canadienne De Statistique Pub Date : 2024-06-20 DOI:10.1002/cjs.11809
Elaheh Torkashvand, Mohammad Jafari Jozani
{"title":"预防性损失函数下乘法区域级模型中的受限贝叶斯","authors":"Elaheh Torkashvand,&nbsp;Mohammad Jafari Jozani","doi":"10.1002/cjs.11809","DOIUrl":null,"url":null,"abstract":"<p>Consider the problem of benchmarking small-area estimates under multiplicative models with positive parameters. The goal is to propose a loss function that guarantees positive constrained estimates of small-area parameters in this situation. The weighted precautionary loss function is introduced to solve the problem. Compared with the weighted Kullback–Leibler (KL) loss function, our proposed loss function penalizes underestimation of the small-area parameters of interest more for small values of parameters. This property is appealing when we estimate disease rates. It tends to give larger estimates of small-area parameters compared with those obtained under the KL loss function. The hierarchical empirical Bayes and constrained hierarchical empirical Bayes estimates of small-area parameters and their corresponding risk functions under the new proposed loss function are obtained. The performance of the proposed methods is investigated using simulation studies and a real dataset.</p>","PeriodicalId":55281,"journal":{"name":"Canadian Journal of Statistics-Revue Canadienne De Statistique","volume":"52 4","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constrained Bayes in multiplicative area-level models under the precautionary loss function\",\"authors\":\"Elaheh Torkashvand,&nbsp;Mohammad Jafari Jozani\",\"doi\":\"10.1002/cjs.11809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Consider the problem of benchmarking small-area estimates under multiplicative models with positive parameters. The goal is to propose a loss function that guarantees positive constrained estimates of small-area parameters in this situation. The weighted precautionary loss function is introduced to solve the problem. Compared with the weighted Kullback–Leibler (KL) loss function, our proposed loss function penalizes underestimation of the small-area parameters of interest more for small values of parameters. This property is appealing when we estimate disease rates. It tends to give larger estimates of small-area parameters compared with those obtained under the KL loss function. The hierarchical empirical Bayes and constrained hierarchical empirical Bayes estimates of small-area parameters and their corresponding risk functions under the new proposed loss function are obtained. The performance of the proposed methods is investigated using simulation studies and a real dataset.</p>\",\"PeriodicalId\":55281,\"journal\":{\"name\":\"Canadian Journal of Statistics-Revue Canadienne De Statistique\",\"volume\":\"52 4\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Statistics-Revue Canadienne De Statistique\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11809\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Statistics-Revue Canadienne De Statistique","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11809","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

考虑在参数为正的乘法模型下对小面积估计值进行基准测试的问题。我们的目标是提出一种损失函数,以保证在这种情况下小面积参数的正约束估计值。为了解决这个问题,引入了加权预防损失函数。与加权库尔巴克-莱伯勒(KL)损失函数相比,我们提出的损失函数对小参数值的小面积参数低估的惩罚更大。当我们估算疾病发病率时,这一特性很有吸引力。与 KL 损失函数相比,它倾向于给出更大的小区域参数估计值。在新提出的损失函数下,得到了小区域参数的分层经验贝叶斯估计值和受约束分层经验贝叶斯估计值及其相应的风险函数。利用模拟研究和真实数据集对所提方法的性能进行了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Constrained Bayes in multiplicative area-level models under the precautionary loss function

Consider the problem of benchmarking small-area estimates under multiplicative models with positive parameters. The goal is to propose a loss function that guarantees positive constrained estimates of small-area parameters in this situation. The weighted precautionary loss function is introduced to solve the problem. Compared with the weighted Kullback–Leibler (KL) loss function, our proposed loss function penalizes underestimation of the small-area parameters of interest more for small values of parameters. This property is appealing when we estimate disease rates. It tends to give larger estimates of small-area parameters compared with those obtained under the KL loss function. The hierarchical empirical Bayes and constrained hierarchical empirical Bayes estimates of small-area parameters and their corresponding risk functions under the new proposed loss function are obtained. The performance of the proposed methods is investigated using simulation studies and a real dataset.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
62
审稿时长
>12 weeks
期刊介绍: The Canadian Journal of Statistics is the official journal of the Statistical Society of Canada. It has a reputation internationally as an excellent journal. The editorial board is comprised of statistical scientists with applied, computational, methodological, theoretical and probabilistic interests. Their role is to ensure that the journal continues to provide an international forum for the discipline of Statistics. The journal seeks papers making broad points of interest to many readers, whereas papers making important points of more specific interest are better placed in more specialized journals. The levels of innovation and impact are key in the evaluation of submitted manuscripts.
期刊最新文献
Issue Information True and false discoveries with independent and sequential e-values Issue Information Multiple change-point detection for regression curves Robust estimation of loss-based measures of model performance under covariate shift
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1