Jesse Franklin White, Luis Miguel López Renau, Björn Glaser
{"title":"冶金工业电极和耐火材料中的生物碳替代品综述","authors":"Jesse Franklin White, Luis Miguel López Renau, Björn Glaser","doi":"10.1007/s40831-024-00870-x","DOIUrl":null,"url":null,"abstract":"<p>The chemical and thermophysical properties of carbon make it essentially irreplaceable for non-reductant uses in many high-temperature metallurgical processes. At present, biocarbon substitutes are not technically feasible for large-scale application in electrode and refractory materials that are such vital consumables in the steel, aluminum, and non-ferrous metal industries. Carbon electrodes of all types, including Söderberg, prebaked, and anodes/cathodes for Al, graphite electrodes, as well as carbon lining pastes are all similar in that they are comprised of a granular carbon aggregate bonded in a carbon-based binder matrix. Similarly, refractories such as MgO–C utilize both natural (mined) graphite and carbon-based binders. Replacement of fossil carbon materials with biocarbon substitutes has the potential to dramatically reduce the carbon footprints of these products. However, there are considerable materials engineering challenges that must be surmounted. The technological demands for these applications and potential for substitution with biogenic carbon are explored.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"224 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Review of Biocarbon Substitutes in Electrodes and Refractories for the Metallurgical Industries\",\"authors\":\"Jesse Franklin White, Luis Miguel López Renau, Björn Glaser\",\"doi\":\"10.1007/s40831-024-00870-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The chemical and thermophysical properties of carbon make it essentially irreplaceable for non-reductant uses in many high-temperature metallurgical processes. At present, biocarbon substitutes are not technically feasible for large-scale application in electrode and refractory materials that are such vital consumables in the steel, aluminum, and non-ferrous metal industries. Carbon electrodes of all types, including Söderberg, prebaked, and anodes/cathodes for Al, graphite electrodes, as well as carbon lining pastes are all similar in that they are comprised of a granular carbon aggregate bonded in a carbon-based binder matrix. Similarly, refractories such as MgO–C utilize both natural (mined) graphite and carbon-based binders. Replacement of fossil carbon materials with biocarbon substitutes has the potential to dramatically reduce the carbon footprints of these products. However, there are considerable materials engineering challenges that must be surmounted. The technological demands for these applications and potential for substitution with biogenic carbon are explored.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":17160,\"journal\":{\"name\":\"Journal of Sustainable Metallurgy\",\"volume\":\"224 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sustainable Metallurgy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s40831-024-00870-x\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40831-024-00870-x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
A Review of Biocarbon Substitutes in Electrodes and Refractories for the Metallurgical Industries
The chemical and thermophysical properties of carbon make it essentially irreplaceable for non-reductant uses in many high-temperature metallurgical processes. At present, biocarbon substitutes are not technically feasible for large-scale application in electrode and refractory materials that are such vital consumables in the steel, aluminum, and non-ferrous metal industries. Carbon electrodes of all types, including Söderberg, prebaked, and anodes/cathodes for Al, graphite electrodes, as well as carbon lining pastes are all similar in that they are comprised of a granular carbon aggregate bonded in a carbon-based binder matrix. Similarly, refractories such as MgO–C utilize both natural (mined) graphite and carbon-based binders. Replacement of fossil carbon materials with biocarbon substitutes has the potential to dramatically reduce the carbon footprints of these products. However, there are considerable materials engineering challenges that must be surmounted. The technological demands for these applications and potential for substitution with biogenic carbon are explored.
期刊介绍:
Journal of Sustainable Metallurgy is dedicated to presenting metallurgical processes and related research aimed at improving the sustainability of metal-producing industries, with a particular emphasis on materials recovery, reuse, and recycling. Its editorial scope encompasses new techniques, as well as optimization of existing processes, including utilization, treatment, and management of metallurgically generated residues. Articles on non-technical barriers and drivers that can affect sustainability will also be considered.