成分和温度对铝矾土渣石灰混合物烧结颗粒氢还原行为的影响

IF 2.5 3区 材料科学 Q3 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Journal of Sustainable Metallurgy Pub Date : 2024-06-18 DOI:10.1007/s40831-024-00849-8
Manish Kumar Kar, Casper van der Eijk, Jafar Safarian
{"title":"成分和温度对铝矾土渣石灰混合物烧结颗粒氢还原行为的影响","authors":"Manish Kumar Kar, Casper van der Eijk, Jafar Safarian","doi":"10.1007/s40831-024-00849-8","DOIUrl":null,"url":null,"abstract":"<p>This study explores the isothermal hydrogen reduction of sintered pellets made of a mixture of bauxite residue and calcite with varying compositions at different reduction temperatures. Sintered pellets with varying compositions show three primary iron-containing oxide phases including brownmillerite, srebrodolskite, and fayalite; however, brownmillerite is the major phase in all the sintered pellets. The sintered pellets were reduced in a thermogravimetry furnace to establish instantaneous weight reduction with respect to time. Phases and microstructural analysis were carried out using X-ray diffraction and scanning electron microscopy, respectively. Mercury intrusion porosimeter and pycnometer were utilized to assess the porosity and density of the reduced pellets. Thermochemistry calculations were performed using the thermodynamics software FactSage 8.2. The reduction rate is most pronounced at a temperature of 1000 °C for all pellet compositions. It is intriguing to note that the rate of reduction shows minimal variance across pellets with different compositions; however, the higher calcite pellets exhibit a higher initial rate of reduction. Various kinetic models were examined to determine the activation energies for three different composition pellets, and the three-dimensional diffusion model has been well suited for this process. Close activation energies in the range of 84.6 to 94.8 kJ were obtained. A slightly higher activation energy was obtained for lower CaCO<sub>3</sub> added pellets, and it was attributed to their reduced porosity and increased sintering, impeding the reaction kinetics. There were no significant differences in the formation of mayenite with varying the calcite amount; however, higher calcite pellets indicated more mayenite formation.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effect of Composition and Temperature on the Hydrogen Reduction Behavior of Sintered Pellets of Bauxite Residue-Lime Mixtures\",\"authors\":\"Manish Kumar Kar, Casper van der Eijk, Jafar Safarian\",\"doi\":\"10.1007/s40831-024-00849-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study explores the isothermal hydrogen reduction of sintered pellets made of a mixture of bauxite residue and calcite with varying compositions at different reduction temperatures. Sintered pellets with varying compositions show three primary iron-containing oxide phases including brownmillerite, srebrodolskite, and fayalite; however, brownmillerite is the major phase in all the sintered pellets. The sintered pellets were reduced in a thermogravimetry furnace to establish instantaneous weight reduction with respect to time. Phases and microstructural analysis were carried out using X-ray diffraction and scanning electron microscopy, respectively. Mercury intrusion porosimeter and pycnometer were utilized to assess the porosity and density of the reduced pellets. Thermochemistry calculations were performed using the thermodynamics software FactSage 8.2. The reduction rate is most pronounced at a temperature of 1000 °C for all pellet compositions. It is intriguing to note that the rate of reduction shows minimal variance across pellets with different compositions; however, the higher calcite pellets exhibit a higher initial rate of reduction. Various kinetic models were examined to determine the activation energies for three different composition pellets, and the three-dimensional diffusion model has been well suited for this process. Close activation energies in the range of 84.6 to 94.8 kJ were obtained. A slightly higher activation energy was obtained for lower CaCO<sub>3</sub> added pellets, and it was attributed to their reduced porosity and increased sintering, impeding the reaction kinetics. There were no significant differences in the formation of mayenite with varying the calcite amount; however, higher calcite pellets indicated more mayenite formation.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":17160,\"journal\":{\"name\":\"Journal of Sustainable Metallurgy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sustainable Metallurgy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s40831-024-00849-8\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40831-024-00849-8","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了在不同还原温度下对由不同成分的铝矾土渣和方解石混合物制成的烧结球团进行等温氢还原的过程。不同成分的烧结球团显示出三种主要的含铁氧化物相,包括褐铁矿、钠钙矾土和辉绿岩;然而,褐铁矿是所有烧结球团中的主要相。烧结球团在热重炉中进行还原,以确定随时间变化的瞬时重量减少量。分别使用 X 射线衍射和扫描电子显微镜进行了物相和微观结构分析。汞侵入孔隙度计和比重计用于评估还原颗粒的孔隙度和密度。热化学计算使用热力学软件 FactSage 8.2 进行。对于所有颗粒成分,还原率在温度为 1000 °C 时最为明显。耐人寻味的是,不同成分的颗粒的还原率差异极小;然而,方解石含量较高的颗粒表现出较高的初始还原率。为了确定三种不同成分颗粒的活化能,我们研究了各种动力学模型,发现三维扩散模型非常适合这一过程。得到的活化能在 84.6 至 94.8 千焦之间。CaCO3 添加量较低的颗粒的活化能略高,这是因为它们的孔隙率降低,烧结程度增加,阻碍了反应动力学。方解石含量不同,形成的麦饭石没有明显差异;但是,方解石含量较高的球团表明形成的麦饭石较多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Effect of Composition and Temperature on the Hydrogen Reduction Behavior of Sintered Pellets of Bauxite Residue-Lime Mixtures

This study explores the isothermal hydrogen reduction of sintered pellets made of a mixture of bauxite residue and calcite with varying compositions at different reduction temperatures. Sintered pellets with varying compositions show three primary iron-containing oxide phases including brownmillerite, srebrodolskite, and fayalite; however, brownmillerite is the major phase in all the sintered pellets. The sintered pellets were reduced in a thermogravimetry furnace to establish instantaneous weight reduction with respect to time. Phases and microstructural analysis were carried out using X-ray diffraction and scanning electron microscopy, respectively. Mercury intrusion porosimeter and pycnometer were utilized to assess the porosity and density of the reduced pellets. Thermochemistry calculations were performed using the thermodynamics software FactSage 8.2. The reduction rate is most pronounced at a temperature of 1000 °C for all pellet compositions. It is intriguing to note that the rate of reduction shows minimal variance across pellets with different compositions; however, the higher calcite pellets exhibit a higher initial rate of reduction. Various kinetic models were examined to determine the activation energies for three different composition pellets, and the three-dimensional diffusion model has been well suited for this process. Close activation energies in the range of 84.6 to 94.8 kJ were obtained. A slightly higher activation energy was obtained for lower CaCO3 added pellets, and it was attributed to their reduced porosity and increased sintering, impeding the reaction kinetics. There were no significant differences in the formation of mayenite with varying the calcite amount; however, higher calcite pellets indicated more mayenite formation.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Sustainable Metallurgy
Journal of Sustainable Metallurgy Materials Science-Metals and Alloys
CiteScore
4.00
自引率
12.50%
发文量
151
期刊介绍: Journal of Sustainable Metallurgy is dedicated to presenting metallurgical processes and related research aimed at improving the sustainability of metal-producing industries, with a particular emphasis on materials recovery, reuse, and recycling. Its editorial scope encompasses new techniques, as well as optimization of existing processes, including utilization, treatment, and management of metallurgically generated residues. Articles on non-technical barriers and drivers that can affect sustainability will also be considered.
期刊最新文献
Iron Chloride Vapor Treatment for Leaching Platinum Group Metals from Spent Catalysts Environmentally Friendly Separating of Fine Copper Particles from Lithium Iron Phosphate and Graphite by Centrifugal Gravity Concentration Emerging Electrochemical Techniques for Recycling Spent Lead Paste in Lead-Acid Batteries A New Approach of Pelletizing: Use of Low-Grade Ore as a Potential Raw Material Eco-Friendly and Efficient Alumina Recovery from Coal Fly Ash by Employing the CaO as an Additive During the Vacuum Carbothermic Reduction and Alkali Dissolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1