嘈杂环境中的多方三维非对称循环受控量子远距传输

IF 2.2 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL Quantum Information Processing Pub Date : 2024-07-03 DOI:10.1007/s11128-024-04474-y
She-Xiang Jiang, Jin Shi
{"title":"嘈杂环境中的多方三维非对称循环受控量子远距传输","authors":"She-Xiang Jiang, Jin Shi","doi":"10.1007/s11128-024-04474-y","DOIUrl":null,"url":null,"abstract":"<p>In this paper, a new scheme for asymmetric cyclic controlled teleportation of arbitrary three-dimensional unknown quantum states is proposed by performing three-dimensional Bell-state measurements and three-dimensional Hadamard transformation. The entangled state of thirteen-qutrit acts as the quantum channel to connect senders and receivers, which is constructed by a three-qutrit entangled state and five two-qutrit entangled states. In this scheme, Alice wants to transmit an arbitrary unknown single-qutrit state to Bob, at the same time, Bob wants to transmit an arbitrary unknown two-qutrit entangled state to Charlie and Charlie wants to transmit an arbitrary unknown three-qutrit entangled state to Alice under the control of the supervisor David. Participants can reconstruct the original states and make the scheme perfectly by performing appropriate unitary operation. Then, the scheme can be generalized to realize the asymmetric cyclic controlled quantum teleportation of <i>N</i> (<i>N</i> &gt; 3) participants in the three-dimensional system, and come up with two universal schemes are determined by the parity of the participant. Furthermore, the scheme is investigated in two different noisy channels: amplitude-damping noise and phase-damping noise, and calculated the fidelities of the output states. It is demonstrated that the fidelities only depend on the coefficients of the initial state and the decoherence noisy rate. The security of the scheme is briefly analyzed and compares with the previous schemes in terms of efficiency. The proposed scheme contributes to advancing understanding of high-dimensional quantum teleportation.</p>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-party three-dimensional asymmetric cyclic controlled quantum teleportation in noisy environment\",\"authors\":\"She-Xiang Jiang, Jin Shi\",\"doi\":\"10.1007/s11128-024-04474-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, a new scheme for asymmetric cyclic controlled teleportation of arbitrary three-dimensional unknown quantum states is proposed by performing three-dimensional Bell-state measurements and three-dimensional Hadamard transformation. The entangled state of thirteen-qutrit acts as the quantum channel to connect senders and receivers, which is constructed by a three-qutrit entangled state and five two-qutrit entangled states. In this scheme, Alice wants to transmit an arbitrary unknown single-qutrit state to Bob, at the same time, Bob wants to transmit an arbitrary unknown two-qutrit entangled state to Charlie and Charlie wants to transmit an arbitrary unknown three-qutrit entangled state to Alice under the control of the supervisor David. Participants can reconstruct the original states and make the scheme perfectly by performing appropriate unitary operation. Then, the scheme can be generalized to realize the asymmetric cyclic controlled quantum teleportation of <i>N</i> (<i>N</i> &gt; 3) participants in the three-dimensional system, and come up with two universal schemes are determined by the parity of the participant. Furthermore, the scheme is investigated in two different noisy channels: amplitude-damping noise and phase-damping noise, and calculated the fidelities of the output states. It is demonstrated that the fidelities only depend on the coefficients of the initial state and the decoherence noisy rate. The security of the scheme is briefly analyzed and compares with the previous schemes in terms of efficiency. The proposed scheme contributes to advancing understanding of high-dimensional quantum teleportation.</p>\",\"PeriodicalId\":746,\"journal\":{\"name\":\"Quantum Information Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Information Processing\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1007/s11128-024-04474-y\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11128-024-04474-y","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种通过三维贝尔态测量和三维哈达玛变换实现任意三维未知量子态非对称循环受控远传的新方案。由一个三维量子纠缠态和五个二维量子纠缠态构成的十三维量子纠缠态是连接发送方和接收方的量子信道。在这个方案中,爱丽丝要向鲍勃传输一个任意未知的单量子态,同时鲍勃要向查理传输一个任意未知的二量子态纠缠态,而查理要在监督者戴维的控制下向爱丽丝传输一个任意未知的三量子态纠缠态。参与者可以通过执行适当的单元运算重建原始状态,使方案完美无缺。然后,该方案可以推广到实现N(N >3)个参与者在三维系统中的非对称循环受控量子远传,并得出两种由参与者奇偶性决定的通用方案。此外,该方案还在两种不同的噪声信道(振幅阻尼噪声和相位阻尼噪声)中进行了研究,并计算了输出状态的保真度。结果表明,保真度只取决于初始状态的系数和退相干噪声率。简要分析了该方案的安全性,并从效率方面与之前的方案进行了比较。提出的方案有助于推进对高维量子远距传输的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-party three-dimensional asymmetric cyclic controlled quantum teleportation in noisy environment

In this paper, a new scheme for asymmetric cyclic controlled teleportation of arbitrary three-dimensional unknown quantum states is proposed by performing three-dimensional Bell-state measurements and three-dimensional Hadamard transformation. The entangled state of thirteen-qutrit acts as the quantum channel to connect senders and receivers, which is constructed by a three-qutrit entangled state and five two-qutrit entangled states. In this scheme, Alice wants to transmit an arbitrary unknown single-qutrit state to Bob, at the same time, Bob wants to transmit an arbitrary unknown two-qutrit entangled state to Charlie and Charlie wants to transmit an arbitrary unknown three-qutrit entangled state to Alice under the control of the supervisor David. Participants can reconstruct the original states and make the scheme perfectly by performing appropriate unitary operation. Then, the scheme can be generalized to realize the asymmetric cyclic controlled quantum teleportation of N (N > 3) participants in the three-dimensional system, and come up with two universal schemes are determined by the parity of the participant. Furthermore, the scheme is investigated in two different noisy channels: amplitude-damping noise and phase-damping noise, and calculated the fidelities of the output states. It is demonstrated that the fidelities only depend on the coefficients of the initial state and the decoherence noisy rate. The security of the scheme is briefly analyzed and compares with the previous schemes in terms of efficiency. The proposed scheme contributes to advancing understanding of high-dimensional quantum teleportation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum Information Processing
Quantum Information Processing 物理-物理:数学物理
CiteScore
4.10
自引率
20.00%
发文量
337
审稿时长
4.5 months
期刊介绍: Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.
期刊最新文献
General measurements with limited resources and their application to quantum unambiguous state discrimination Quantum related-key differential cryptanalysis An inequality for entangled qutrits in SU(3) basis Hardware efficient decomposition of the Laplace operator and its application to the Helmholtz and the Poisson equation on quantum computer Photonic communications with quadrature-amplitude modulated quantum coherent states in alternated and dual polarizations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1