两种不同栽培品种欧琴圣草内生菌的多样性和功能特征:基于培养和元基因组方法的启示

IF 3.9 3区 生物学 Q1 PLANT SCIENCES Journal of Plant Growth Regulation Pub Date : 2024-07-01 DOI:10.1007/s00344-024-11373-0
Rahul Kumar Gupta, Shiwangi Singh, C S Chanotiya, Kapil Dev, Prabodh Kumar Trivedi, Akanksha Singh
{"title":"两种不同栽培品种欧琴圣草内生菌的多样性和功能特征:基于培养和元基因组方法的启示","authors":"Rahul Kumar Gupta, Shiwangi Singh, C S Chanotiya, Kapil Dev, Prabodh Kumar Trivedi, Akanksha Singh","doi":"10.1007/s00344-024-11373-0","DOIUrl":null,"url":null,"abstract":"<p>In this study, a comparative evaluation was conducted on two different cultivars of <i>Ocimum sanctum</i> to determine the diversity of bacterial and fungal endophytes in root and shoot tissues. This assessment utilized both culture-based and culture-independent high-throughput sequencing approaches. Phylum and subsequently genus level information of bacteria and fungi revealed contrasting differences in the shoot tissue. CIM-Ayu cultivar was dominated by Firmicutes with <i>Bacillus</i> as most abundant genera, while Proteobacteria dominated the CIM-Angana cultivar that had major abundance of <i>Pseudomonas</i>. Overall, the operational taxonomic units (OTUs) information indicated dominance of <i>Pseudomonas, Bacillus, Stenotrophomonas,</i> and <i>Flavobacterium</i> genera in both the shoot and root samples of <i>O. sanctum.</i> Likewise, in case of fungal endophytes CIM-Ayu shoot was specifically enriched with Ascomycota while CIM-Angana was dominated by Basidiomycota. Notably, <i>Saitozyma, Xenomyrothecium</i>, and <i>Cladosporium</i> were the abundant fungal genera in shoot samples of CIM-Ayu while <i>Fusarium, Corynespora</i>, and <i>Kazachstania</i> dominated the root tissues. In total, 45 endophytes were discerned from the above- and belowground tissues of both <i>O. sanctum</i> cultivars through the implementation of a culture-dependent method. Further investigation of these isolates through the application of 16S rRNA and ITS gene sequencing substantiated that <i>Bacillus</i> and <i>Pseudomonas</i> were the prevailing genera. Furthermore, when all the isolates were screened for their plant growth promotion activity, <i>Lysinibacillus irui</i> An29 significantly enhanced the biomass, oil yield, and eugenol content. Overall, the amalgamation of metagenomics and culture-dependent techniques has furnished significant insights concerning potential bacterial endophytes that can be effectively employed in the field to facilitate growth promotion and enhance secondary metabolites in planta in forthcoming investigations.</p>","PeriodicalId":16842,"journal":{"name":"Journal of Plant Growth Regulation","volume":"31 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diversity and Functional Characterization of Endophytes in Two Contrasting Cultivars of Ocimum sanctum: Insights from Culture-Based and Metagenomic Approaches\",\"authors\":\"Rahul Kumar Gupta, Shiwangi Singh, C S Chanotiya, Kapil Dev, Prabodh Kumar Trivedi, Akanksha Singh\",\"doi\":\"10.1007/s00344-024-11373-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, a comparative evaluation was conducted on two different cultivars of <i>Ocimum sanctum</i> to determine the diversity of bacterial and fungal endophytes in root and shoot tissues. This assessment utilized both culture-based and culture-independent high-throughput sequencing approaches. Phylum and subsequently genus level information of bacteria and fungi revealed contrasting differences in the shoot tissue. CIM-Ayu cultivar was dominated by Firmicutes with <i>Bacillus</i> as most abundant genera, while Proteobacteria dominated the CIM-Angana cultivar that had major abundance of <i>Pseudomonas</i>. Overall, the operational taxonomic units (OTUs) information indicated dominance of <i>Pseudomonas, Bacillus, Stenotrophomonas,</i> and <i>Flavobacterium</i> genera in both the shoot and root samples of <i>O. sanctum.</i> Likewise, in case of fungal endophytes CIM-Ayu shoot was specifically enriched with Ascomycota while CIM-Angana was dominated by Basidiomycota. Notably, <i>Saitozyma, Xenomyrothecium</i>, and <i>Cladosporium</i> were the abundant fungal genera in shoot samples of CIM-Ayu while <i>Fusarium, Corynespora</i>, and <i>Kazachstania</i> dominated the root tissues. In total, 45 endophytes were discerned from the above- and belowground tissues of both <i>O. sanctum</i> cultivars through the implementation of a culture-dependent method. Further investigation of these isolates through the application of 16S rRNA and ITS gene sequencing substantiated that <i>Bacillus</i> and <i>Pseudomonas</i> were the prevailing genera. Furthermore, when all the isolates were screened for their plant growth promotion activity, <i>Lysinibacillus irui</i> An29 significantly enhanced the biomass, oil yield, and eugenol content. Overall, the amalgamation of metagenomics and culture-dependent techniques has furnished significant insights concerning potential bacterial endophytes that can be effectively employed in the field to facilitate growth promotion and enhance secondary metabolites in planta in forthcoming investigations.</p>\",\"PeriodicalId\":16842,\"journal\":{\"name\":\"Journal of Plant Growth Regulation\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plant Growth Regulation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00344-024-11373-0\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Growth Regulation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00344-024-11373-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究对两种不同的欧加木栽培品种进行了比较评估,以确定根和芽组织中细菌和真菌内生菌的多样性。这项评估采用了基于培养和不依赖培养的高通量测序方法。细菌和真菌的门级信息以及随后的属级信息揭示了芽组织中的对比差异。CIM-Ayu 栽培品种主要是以芽孢杆菌为代表的固着菌门,而 CIM-Angana 栽培品种主要是以假单胞菌为代表的变形菌门。总体而言,操作分类单元(OTUs)信息表明,假单胞菌属、芽孢杆菌属、僵化单胞菌属和黄杆菌属在圣女果的芽和根样本中均占优势。同样,在真菌内生菌方面,CIM-Ayu 的嫩枝特别富含子囊菌群,而 CIM-Angana 则以担子菌群为主。值得注意的是,Saitozyma、Xenomyrothecium 和 Cladosporium 是 CIM-Ayu 嫩枝样本中大量的真菌属,而 Fusarium、Corynespora 和 Kazachstania 则在根部组织中占主导地位。通过采用依赖培养的方法,共从两个圣女果栽培品种的地上和地下组织中发现了 45 个内生菌。通过 16S rRNA 和 ITS 基因测序对这些分离物进行进一步研究,证实芽孢杆菌和假单胞菌是主要的菌属。此外,在对所有分离物进行植物生长促进活性筛选时,Lysinibacillus irui An29 能显著提高生物量、产油量和丁香酚含量。总之,元基因组学和依赖培养技术的结合为研究潜在的细菌内生菌提供了重要依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Diversity and Functional Characterization of Endophytes in Two Contrasting Cultivars of Ocimum sanctum: Insights from Culture-Based and Metagenomic Approaches

In this study, a comparative evaluation was conducted on two different cultivars of Ocimum sanctum to determine the diversity of bacterial and fungal endophytes in root and shoot tissues. This assessment utilized both culture-based and culture-independent high-throughput sequencing approaches. Phylum and subsequently genus level information of bacteria and fungi revealed contrasting differences in the shoot tissue. CIM-Ayu cultivar was dominated by Firmicutes with Bacillus as most abundant genera, while Proteobacteria dominated the CIM-Angana cultivar that had major abundance of Pseudomonas. Overall, the operational taxonomic units (OTUs) information indicated dominance of Pseudomonas, Bacillus, Stenotrophomonas, and Flavobacterium genera in both the shoot and root samples of O. sanctum. Likewise, in case of fungal endophytes CIM-Ayu shoot was specifically enriched with Ascomycota while CIM-Angana was dominated by Basidiomycota. Notably, Saitozyma, Xenomyrothecium, and Cladosporium were the abundant fungal genera in shoot samples of CIM-Ayu while Fusarium, Corynespora, and Kazachstania dominated the root tissues. In total, 45 endophytes were discerned from the above- and belowground tissues of both O. sanctum cultivars through the implementation of a culture-dependent method. Further investigation of these isolates through the application of 16S rRNA and ITS gene sequencing substantiated that Bacillus and Pseudomonas were the prevailing genera. Furthermore, when all the isolates were screened for their plant growth promotion activity, Lysinibacillus irui An29 significantly enhanced the biomass, oil yield, and eugenol content. Overall, the amalgamation of metagenomics and culture-dependent techniques has furnished significant insights concerning potential bacterial endophytes that can be effectively employed in the field to facilitate growth promotion and enhance secondary metabolites in planta in forthcoming investigations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.40
自引率
6.20%
发文量
312
审稿时长
1.8 months
期刊介绍: The Journal of Plant Growth Regulation is an international publication featuring original articles on all aspects of plant growth and development. We welcome manuscripts reporting question-based research on various aspects of plant growth and development using hormonal, physiological, environmental, genetic, biophysical, developmental and/or molecular approaches. The journal also publishes timely reviews on highly relevant areas and/or studies in plant growth and development, including interdisciplinary work with an emphasis on plant growth, plant hormones and plant pathology or abiotic stress. In addition, the journal features occasional thematic issues with special guest editors, as well as brief communications describing novel techniques and meeting reports. The journal is unlikely to accept manuscripts that are purely descriptive in nature or reports work with simple tissue culture without attempting to investigate the underlying mechanisms of plant growth regulation, those that focus exclusively on microbial communities, or deal with the (elicitation by plant hormones of) synthesis of secondary metabolites.
期刊最新文献
A Pyrazole Partially Induces Brassinosteroid-Related Gene Expression, Leading to Salt Stress Sensitivity Sodium Nitroprusside and Melatonin Improve Physiological Vitality and Drought Acclimation via Synergistically Enhancing Antioxidant Response in Dryland Maize The Role of the BELL1-2 Transcription Factor in the Development of Legume-rhizobial Symbiosis In Vitro Mutagenesis: A Non-invasive Technology for Effective Crop Improvement to Assure Food and Nutritional Security—Current Trends, Advancements and Future Perspectives MeJA Changes Root Growth, Iridoid, Xanthone, and Secoiridoid Production, as well as Gene Expression Levels in Root Cultures of Endangered Gentiana lutea and Gentiana boissieri
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1