{"title":"A-Site银替代对Bi1/2Na1/2-xAgxTiO3(x = 0.0、0.025、0.075和0.1)无铅陶瓷结构和电学特性的影响","authors":"Susheel Patel, Pallavi Saxena, A. Mishra","doi":"10.1007/s10948-024-06790-x","DOIUrl":null,"url":null,"abstract":"<p>Silver-doped Bi<sub>1/2</sub>Na<sub>1/2-<i>x</i></sub>Ag<sub><i>x</i></sub>TiO<sub>3</sub> (BNAT) ceramics (<i>x</i> = 0.0, 0.025, 0.075, and 0.1) were synthesized using the solid-state reaction (SSR) technique. The structural analysis was performed using the X-ray diffraction (XRD) technique, which revealed the formation of a polycrystalline sample with <i>R</i>3<i>c</i> symmetry. Pristine Bi<sub>0.5</sub>Na<sub>0.5</sub>TiO<sub>3</sub> (BNT) ceramics exhibited an average crystallite size of ~25.372 nm. Doping a small amount of Ag<sup>+</sup> ions in place of Na<sup>+</sup> ions resulted in an improved average crystallite size of ~26.365 nm, as calculated by Debye-Scherrer’s formula. Raman spectra were employed to investigate the vibrational modes of the materials. The FTIR spectra of Ag<sup>+</sup>-doped BNT ceramics displayed two strong peaks at ~971 and 537 cm<sup>−1</sup>, attributed to the presence of metal-oxygen bonds. Room temperature dielectric constant (ε′) and dielectric loss (tan <i>δ</i>) analyses were conducted in the frequency range of 20 Hz to 1 MHz. Complex impedance and modulus spectroscopic analyses indicated the presence of grain boundary effects alongside the bulk contribution and also confirmed the presence of non-Debye relaxations in the materials.</p>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":"6 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of A-Site Ag Substitution on Structural and Electrical Properties of Bi1/2Na1/2-xAgxTiO3 (x = 0.0, 0.025, 0.075, and 0.1) Lead-Free Ceramics\",\"authors\":\"Susheel Patel, Pallavi Saxena, A. Mishra\",\"doi\":\"10.1007/s10948-024-06790-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Silver-doped Bi<sub>1/2</sub>Na<sub>1/2-<i>x</i></sub>Ag<sub><i>x</i></sub>TiO<sub>3</sub> (BNAT) ceramics (<i>x</i> = 0.0, 0.025, 0.075, and 0.1) were synthesized using the solid-state reaction (SSR) technique. The structural analysis was performed using the X-ray diffraction (XRD) technique, which revealed the formation of a polycrystalline sample with <i>R</i>3<i>c</i> symmetry. Pristine Bi<sub>0.5</sub>Na<sub>0.5</sub>TiO<sub>3</sub> (BNT) ceramics exhibited an average crystallite size of ~25.372 nm. Doping a small amount of Ag<sup>+</sup> ions in place of Na<sup>+</sup> ions resulted in an improved average crystallite size of ~26.365 nm, as calculated by Debye-Scherrer’s formula. Raman spectra were employed to investigate the vibrational modes of the materials. The FTIR spectra of Ag<sup>+</sup>-doped BNT ceramics displayed two strong peaks at ~971 and 537 cm<sup>−1</sup>, attributed to the presence of metal-oxygen bonds. Room temperature dielectric constant (ε′) and dielectric loss (tan <i>δ</i>) analyses were conducted in the frequency range of 20 Hz to 1 MHz. Complex impedance and modulus spectroscopic analyses indicated the presence of grain boundary effects alongside the bulk contribution and also confirmed the presence of non-Debye relaxations in the materials.</p>\",\"PeriodicalId\":669,\"journal\":{\"name\":\"Journal of Superconductivity and Novel Magnetism\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Superconductivity and Novel Magnetism\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1007/s10948-024-06790-x\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superconductivity and Novel Magnetism","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s10948-024-06790-x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Influence of A-Site Ag Substitution on Structural and Electrical Properties of Bi1/2Na1/2-xAgxTiO3 (x = 0.0, 0.025, 0.075, and 0.1) Lead-Free Ceramics
Silver-doped Bi1/2Na1/2-xAgxTiO3 (BNAT) ceramics (x = 0.0, 0.025, 0.075, and 0.1) were synthesized using the solid-state reaction (SSR) technique. The structural analysis was performed using the X-ray diffraction (XRD) technique, which revealed the formation of a polycrystalline sample with R3c symmetry. Pristine Bi0.5Na0.5TiO3 (BNT) ceramics exhibited an average crystallite size of ~25.372 nm. Doping a small amount of Ag+ ions in place of Na+ ions resulted in an improved average crystallite size of ~26.365 nm, as calculated by Debye-Scherrer’s formula. Raman spectra were employed to investigate the vibrational modes of the materials. The FTIR spectra of Ag+-doped BNT ceramics displayed two strong peaks at ~971 and 537 cm−1, attributed to the presence of metal-oxygen bonds. Room temperature dielectric constant (ε′) and dielectric loss (tan δ) analyses were conducted in the frequency range of 20 Hz to 1 MHz. Complex impedance and modulus spectroscopic analyses indicated the presence of grain boundary effects alongside the bulk contribution and also confirmed the presence of non-Debye relaxations in the materials.
期刊介绍:
The Journal of Superconductivity and Novel Magnetism serves as the international forum for the most current research and ideas in these fields. This highly acclaimed journal publishes peer-reviewed original papers, conference proceedings and invited review articles that examine all aspects of the science and technology of superconductivity, including new materials, new mechanisms, basic and technological properties, new phenomena, and small- and large-scale applications. Novel magnetism, which is expanding rapidly, is also featured in the journal. The journal focuses on such areas as spintronics, magnetic semiconductors, properties of magnetic multilayers, magnetoresistive materials and structures, magnetic oxides, etc. Novel superconducting and magnetic materials are complex compounds, and the journal publishes articles related to all aspects their study, such as sample preparation, spectroscopy and transport properties as well as various applications.