利用基于随机自旋-轨道扭矩装置的水库计算改进混沌的长期预测

Cen Wang, Xinyao Lei, Kaiming Cai, Xiaofei Yang, Yue Zhang
{"title":"利用基于随机自旋-轨道扭矩装置的水库计算改进混沌的长期预测","authors":"Cen Wang, Xinyao Lei, Kaiming Cai, Xiaofei Yang, Yue Zhang","doi":"arxiv-2407.02384","DOIUrl":null,"url":null,"abstract":"Predicting chaotic systems is crucial for understanding complex behaviors,\nyet challenging due to their sensitivity to initial conditions and inherent\nunpredictability. Probabilistic Reservoir Computing (RC) is well-suited for\nlong-term chaotic predictions by handling complex dynamic systems. Spin-Orbit\nTorque (SOT) devices in spintronics, with their nonlinear and probabilistic\noperations, can enhance performance in these tasks. This study proposes an RC\nsystem utilizing SOT devices for predicting chaotic dynamics. By simulating the\nreservoir in an RC network with SOT devices that achieve nonlinear resistance\nchanges with random distribution, we enhance the robustness for the predictive\ncapability of the model. The RC network predicted the behaviors of the\nMackey-Glass and Lorenz chaotic systems, demonstrating that stochastic SOT\ndevices significantly improve long-term prediction accuracy.","PeriodicalId":501167,"journal":{"name":"arXiv - PHYS - Chaotic Dynamics","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Long-Term Prediction of Chaos Using Reservoir Computing Based on Stochastic Spin-Orbit Torque Devices\",\"authors\":\"Cen Wang, Xinyao Lei, Kaiming Cai, Xiaofei Yang, Yue Zhang\",\"doi\":\"arxiv-2407.02384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicting chaotic systems is crucial for understanding complex behaviors,\\nyet challenging due to their sensitivity to initial conditions and inherent\\nunpredictability. Probabilistic Reservoir Computing (RC) is well-suited for\\nlong-term chaotic predictions by handling complex dynamic systems. Spin-Orbit\\nTorque (SOT) devices in spintronics, with their nonlinear and probabilistic\\noperations, can enhance performance in these tasks. This study proposes an RC\\nsystem utilizing SOT devices for predicting chaotic dynamics. By simulating the\\nreservoir in an RC network with SOT devices that achieve nonlinear resistance\\nchanges with random distribution, we enhance the robustness for the predictive\\ncapability of the model. The RC network predicted the behaviors of the\\nMackey-Glass and Lorenz chaotic systems, demonstrating that stochastic SOT\\ndevices significantly improve long-term prediction accuracy.\",\"PeriodicalId\":501167,\"journal\":{\"name\":\"arXiv - PHYS - Chaotic Dynamics\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Chaotic Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.02384\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.02384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

预测混沌系统对于理解复杂行为至关重要,但由于其对初始条件的敏感性和固有的不可预测性,预测具有挑战性。概率存储计算(RC)非常适合通过处理复杂的动态系统来进行长期混沌预测。自旋电子学中的自旋轨道力矩(SOT)器件具有非线性和概率操作特性,可以提高这些任务的性能。本研究提出了一种利用 SOT 设备预测混沌动力学的 RC 系统。通过模拟 RC 网络中的蓄水池,利用 SOT 器件实现随机分布的非线性电阻变化,我们增强了模型预测能力的稳健性。RC 网络预测了麦基-格拉斯和洛伦兹混沌系统的行为,证明随机 SOT 装置显著提高了长期预测的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improved Long-Term Prediction of Chaos Using Reservoir Computing Based on Stochastic Spin-Orbit Torque Devices
Predicting chaotic systems is crucial for understanding complex behaviors, yet challenging due to their sensitivity to initial conditions and inherent unpredictability. Probabilistic Reservoir Computing (RC) is well-suited for long-term chaotic predictions by handling complex dynamic systems. Spin-Orbit Torque (SOT) devices in spintronics, with their nonlinear and probabilistic operations, can enhance performance in these tasks. This study proposes an RC system utilizing SOT devices for predicting chaotic dynamics. By simulating the reservoir in an RC network with SOT devices that achieve nonlinear resistance changes with random distribution, we enhance the robustness for the predictive capability of the model. The RC network predicted the behaviors of the Mackey-Glass and Lorenz chaotic systems, demonstrating that stochastic SOT devices significantly improve long-term prediction accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tunneling Time for Walking Droplets on an Oscillating Liquid Surface Rydberg excitons in cuprous oxide: A two-particle system with classical chaos Disruption of exo-asteroids around white dwarfs and the release of dust particles in debris rings in co-orbital motion Machine-aided guessing and gluing of unstable periodic orbits Nonequilibrium dynamics of coupled oscillators under the shear-velocity boundary condition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1