关于冰中 CO2 + OH 阴离子反应的机理和量子隧穿:计算研究

IF 2.9 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY ACS Earth and Space Chemistry Pub Date : 2024-06-19 DOI:10.1021/acsearthspacechem.4c00073
Avon P. Jayaweera, Bethmini Senevirathne, Samantha Weerasinghe, Naoki Watanabe, Gunnar Nyman, François Dulieu and W. M. C. Sameera*, 
{"title":"关于冰中 CO2 + OH 阴离子反应的机理和量子隧穿:计算研究","authors":"Avon P. Jayaweera,&nbsp;Bethmini Senevirathne,&nbsp;Samantha Weerasinghe,&nbsp;Naoki Watanabe,&nbsp;Gunnar Nyman,&nbsp;François Dulieu and W. M. C. Sameera*,&nbsp;","doi":"10.1021/acsearthspacechem.4c00073","DOIUrl":null,"url":null,"abstract":"<p >The mechanism of the reaction between CO<sub>2</sub> and OH<sup>–</sup> (anion) in ice cluster models was determined using density functional theory (DFT), employing the ωB97X-D functional and def2-TZVP basis sets for all atoms. A range of reaction barriers, 0.08–0.43 eV, were found, and the lowest energy path has a barrier of 0.08 eV, giving rise to the bicarbonate ion (HCO<sub>3</sub><sup>–</sup>). Computed rate constants, accounting for quantum tunneling by employing the Eckart potential, suggest that the CO<sub>2</sub> + OH<sup>–</sup> → HCO<sub>3</sub><sup>–</sup> reaction can operate in ice at low temperatures (e.g., 10 K). In contrast, relatively high reaction barriers (0.52–0.74 eV) were found for the CO<sub>2</sub> + OH<sup>•</sup> (radical) → HCO<sub>3</sub><sup>•</sup> (radical) reaction, and the computed rate constants at low temperatures (e.g., 10 K) are extremely small. Based on the computed data, we argue that OH<sup>–</sup> can react with CO<sub>2</sub> trapped in interstellar ice at 10 K, and the product of the reaction, HCO<sub>3</sub><sup>–</sup>, is stable in ice. On the other hand, the OH radical does not react with CO<sub>2</sub> in ice. Therefore, we propose that OH anions in interstellar ice play a role in the formation of precursors of complex organic molecules (COMs) in the interstellar medium. The present findings will open a new dimension to explore the chemical evolution in the interstellar medium through the chemistry of anions in interstellar ices.</p>","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Mechanism and Quantum Tunneling of the CO2 + OH Anion Reaction in Ice: A Computational Study\",\"authors\":\"Avon P. Jayaweera,&nbsp;Bethmini Senevirathne,&nbsp;Samantha Weerasinghe,&nbsp;Naoki Watanabe,&nbsp;Gunnar Nyman,&nbsp;François Dulieu and W. M. C. Sameera*,&nbsp;\",\"doi\":\"10.1021/acsearthspacechem.4c00073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The mechanism of the reaction between CO<sub>2</sub> and OH<sup>–</sup> (anion) in ice cluster models was determined using density functional theory (DFT), employing the ωB97X-D functional and def2-TZVP basis sets for all atoms. A range of reaction barriers, 0.08–0.43 eV, were found, and the lowest energy path has a barrier of 0.08 eV, giving rise to the bicarbonate ion (HCO<sub>3</sub><sup>–</sup>). Computed rate constants, accounting for quantum tunneling by employing the Eckart potential, suggest that the CO<sub>2</sub> + OH<sup>–</sup> → HCO<sub>3</sub><sup>–</sup> reaction can operate in ice at low temperatures (e.g., 10 K). In contrast, relatively high reaction barriers (0.52–0.74 eV) were found for the CO<sub>2</sub> + OH<sup>•</sup> (radical) → HCO<sub>3</sub><sup>•</sup> (radical) reaction, and the computed rate constants at low temperatures (e.g., 10 K) are extremely small. Based on the computed data, we argue that OH<sup>–</sup> can react with CO<sub>2</sub> trapped in interstellar ice at 10 K, and the product of the reaction, HCO<sub>3</sub><sup>–</sup>, is stable in ice. On the other hand, the OH radical does not react with CO<sub>2</sub> in ice. Therefore, we propose that OH anions in interstellar ice play a role in the formation of precursors of complex organic molecules (COMs) in the interstellar medium. The present findings will open a new dimension to explore the chemical evolution in the interstellar medium through the chemistry of anions in interstellar ices.</p>\",\"PeriodicalId\":15,\"journal\":{\"name\":\"ACS Earth and Space Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Earth and Space Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsearthspacechem.4c00073\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Earth and Space Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsearthspacechem.4c00073","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

利用密度泛函理论(DFT)确定了冰簇模型中二氧化碳和OH-(阴离子)的反应机理,所有原子均采用ωB97X-D函数和def2-TZVP基础集。研究发现了 0.08-0.43 eV 的反应势垒范围,最低能量路径的势垒为 0.08 eV,产生碳酸氢根离子 (HCO3-)。利用埃卡特电势计算量子隧穿的速率常数表明,CO2 + OH- → HCO3- 反应可在低温(如 10 K)下在冰中进行。相反,我们发现 CO2 + OH- (自由基) → HCO3-(自由基)反应的反应势垒相对较高(0.52-0.74 eV),而且在低温(如 10 K)下计算出的速率常数极小。根据计算得出的数据,我们认为在 10 K 的温度下,OH- 可以与星际冰中的 CO2 发生反应,而反应产物 HCO3- 在冰中是稳定的。另一方面,OH 自由基不会与冰中的 CO2 发生反应。因此,我们认为星际冰中的 OH 阴离子在星际介质中复杂有机分子(COMs)前体的形成过程中发挥了作用。这些发现将为通过星际冰中阴离子的化学性质来探索星际介质的化学演化打开一个新的局面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the Mechanism and Quantum Tunneling of the CO2 + OH Anion Reaction in Ice: A Computational Study

The mechanism of the reaction between CO2 and OH (anion) in ice cluster models was determined using density functional theory (DFT), employing the ωB97X-D functional and def2-TZVP basis sets for all atoms. A range of reaction barriers, 0.08–0.43 eV, were found, and the lowest energy path has a barrier of 0.08 eV, giving rise to the bicarbonate ion (HCO3). Computed rate constants, accounting for quantum tunneling by employing the Eckart potential, suggest that the CO2 + OH → HCO3 reaction can operate in ice at low temperatures (e.g., 10 K). In contrast, relatively high reaction barriers (0.52–0.74 eV) were found for the CO2 + OH (radical) → HCO3 (radical) reaction, and the computed rate constants at low temperatures (e.g., 10 K) are extremely small. Based on the computed data, we argue that OH can react with CO2 trapped in interstellar ice at 10 K, and the product of the reaction, HCO3, is stable in ice. On the other hand, the OH radical does not react with CO2 in ice. Therefore, we propose that OH anions in interstellar ice play a role in the formation of precursors of complex organic molecules (COMs) in the interstellar medium. The present findings will open a new dimension to explore the chemical evolution in the interstellar medium through the chemistry of anions in interstellar ices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Earth and Space Chemistry
ACS Earth and Space Chemistry Earth and Planetary Sciences-Geochemistry and Petrology
CiteScore
5.30
自引率
11.80%
发文量
249
期刊介绍: The scope of ACS Earth and Space Chemistry includes the application of analytical, experimental and theoretical chemistry to investigate research questions relevant to the Earth and Space. The journal encompasses the highly interdisciplinary nature of research in this area, while emphasizing chemistry and chemical research tools as the unifying theme. The journal publishes broadly in the domains of high- and low-temperature geochemistry, atmospheric chemistry, marine chemistry, planetary chemistry, astrochemistry, and analytical geochemistry. ACS Earth and Space Chemistry publishes Articles, Letters, Reviews, and Features to provide flexible formats to readily communicate all aspects of research in these fields.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Temperature and pH Affect the Sorption and Transformation of Dissolved Organic Carbon by Birnessite Determination of Light and Condensate Oil Categories in a Complex Petroleum System by Fluorescence Parameters: A Case Study on the Northern Tazhong Uplift, Tarim Basin, China Fe/Mg-Silicate Chemical Gardens as Analogs to Silicate-Rich Hydrothermal Chimneys on Early Earth and Mars
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1