Keyang Zhang, Shengfeng Zhu, Jiajie Li, Wenjing Yan
{"title":"用于非稳态多尺度流固相互作用模型形状优化的形状梯度法","authors":"Keyang Zhang, Shengfeng Zhu, Jiajie Li, Wenjing Yan","doi":"10.1007/s12220-024-01695-6","DOIUrl":null,"url":null,"abstract":"<p>We consider numerical shape optimization of a fluid–structure interaction model. The constrained system involves multiscale coupling of a two-dimensional unsteady Navier–Stokes equation and a one-dimensional ordinary differential equation for fluid flows and structure, respectively. We derive shape gradients for both objective functionals of least-squares type and energy dissipation. The state and adjoint state equations are numerically solved on the time-dependent domains using the Arbitrary-Lagrangian–Eulerian method. Numerical results are presented to illustrate effectiveness of algorithms.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shape Gradient Methods for Shape Optimization of an Unsteady Multiscale Fluid–Structure Interaction Model\",\"authors\":\"Keyang Zhang, Shengfeng Zhu, Jiajie Li, Wenjing Yan\",\"doi\":\"10.1007/s12220-024-01695-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider numerical shape optimization of a fluid–structure interaction model. The constrained system involves multiscale coupling of a two-dimensional unsteady Navier–Stokes equation and a one-dimensional ordinary differential equation for fluid flows and structure, respectively. We derive shape gradients for both objective functionals of least-squares type and energy dissipation. The state and adjoint state equations are numerically solved on the time-dependent domains using the Arbitrary-Lagrangian–Eulerian method. Numerical results are presented to illustrate effectiveness of algorithms.</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01695-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01695-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Shape Gradient Methods for Shape Optimization of an Unsteady Multiscale Fluid–Structure Interaction Model
We consider numerical shape optimization of a fluid–structure interaction model. The constrained system involves multiscale coupling of a two-dimensional unsteady Navier–Stokes equation and a one-dimensional ordinary differential equation for fluid flows and structure, respectively. We derive shape gradients for both objective functionals of least-squares type and energy dissipation. The state and adjoint state equations are numerically solved on the time-dependent domains using the Arbitrary-Lagrangian–Eulerian method. Numerical results are presented to illustrate effectiveness of algorithms.