{"title":"矢量场和 PDE 分岔背后的基本灾变","authors":"Mike R Jeffrey","doi":"10.1088/1361-6544/ad5637","DOIUrl":null,"url":null,"abstract":"A practical method was proposed recently for finding local bifurcation points in an n-dimensional vector field F by seeking their ‘underlying catastrophes’. Here we apply the idea to the homogeneous steady states of a partial differential equation as an example of the role that catastrophes can play in reaction diffusion. What are these ‘underlying’ catastrophes? We then show they essentially define a restricted class of ‘solvable’ rather than ‘all classifiable’ singularities, by identifying degenerate zeros of a vector field F without taking into account its vectorial character. As a result they are defined by a minimal set of r analytic conditions that provide a practical means to solve for them, and a huge reduction from the calculations needed to classify a singularity, which we will also enumerate here. In this way, underlying catastrophes seem to allow us apply Thom’s elementary catastrophes in much broader contexts.","PeriodicalId":54715,"journal":{"name":"Nonlinearity","volume":"192 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elementary catastrophes underlying bifurcations of vector fields and PDEs\",\"authors\":\"Mike R Jeffrey\",\"doi\":\"10.1088/1361-6544/ad5637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A practical method was proposed recently for finding local bifurcation points in an n-dimensional vector field F by seeking their ‘underlying catastrophes’. Here we apply the idea to the homogeneous steady states of a partial differential equation as an example of the role that catastrophes can play in reaction diffusion. What are these ‘underlying’ catastrophes? We then show they essentially define a restricted class of ‘solvable’ rather than ‘all classifiable’ singularities, by identifying degenerate zeros of a vector field F without taking into account its vectorial character. As a result they are defined by a minimal set of r analytic conditions that provide a practical means to solve for them, and a huge reduction from the calculations needed to classify a singularity, which we will also enumerate here. In this way, underlying catastrophes seem to allow us apply Thom’s elementary catastrophes in much broader contexts.\",\"PeriodicalId\":54715,\"journal\":{\"name\":\"Nonlinearity\",\"volume\":\"192 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinearity\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6544/ad5637\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinearity","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6544/ad5637","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
最近有人提出了一种实用方法,通过寻找 n 维矢量场 F 中的 "底层灾难 "来找到局部分岔点。在此,我们将这一想法应用于偏微分方程的同质稳定状态,以此为例说明灾变在反应扩散中的作用。这些 "潜在 "灾变是什么?通过识别矢量场 F 的退化零点而不考虑其矢量特性,我们证明它们本质上定义了一类受限的 "可解 "奇点,而非 "所有可分类 "奇点。因此,它们是由一组最小的 r 分析条件定义的,这些条件提供了求解它们的实用方法,并大大减少了对奇点进行分类所需的计算量,我们也将在此列举这些计算量。这样,底层灾变似乎可以让我们在更广阔的背景下应用托姆的基本灾变。
Elementary catastrophes underlying bifurcations of vector fields and PDEs
A practical method was proposed recently for finding local bifurcation points in an n-dimensional vector field F by seeking their ‘underlying catastrophes’. Here we apply the idea to the homogeneous steady states of a partial differential equation as an example of the role that catastrophes can play in reaction diffusion. What are these ‘underlying’ catastrophes? We then show they essentially define a restricted class of ‘solvable’ rather than ‘all classifiable’ singularities, by identifying degenerate zeros of a vector field F without taking into account its vectorial character. As a result they are defined by a minimal set of r analytic conditions that provide a practical means to solve for them, and a huge reduction from the calculations needed to classify a singularity, which we will also enumerate here. In this way, underlying catastrophes seem to allow us apply Thom’s elementary catastrophes in much broader contexts.
期刊介绍:
Aimed primarily at mathematicians and physicists interested in research on nonlinear phenomena, the journal''s coverage ranges from proofs of important theorems to papers presenting ideas, conjectures and numerical or physical experiments of significant physical and mathematical interest.
Subject coverage:
The journal publishes papers on nonlinear mathematics, mathematical physics, experimental physics, theoretical physics and other areas in the sciences where nonlinear phenomena are of fundamental importance. A more detailed indication is given by the subject interests of the Editorial Board members, which are listed in every issue of the journal.
Due to the broad scope of Nonlinearity, and in order to make all papers published in the journal accessible to its wide readership, authors are required to provide sufficient introductory material in their paper. This material should contain enough detail and background information to place their research into context and to make it understandable to scientists working on nonlinear phenomena.
Nonlinearity is a journal of the Institute of Physics and the London Mathematical Society.